| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Interface for and implementation of various Line search algorithms. | 
 |  | 
 | #ifndef CERES_INTERNAL_LINE_SEARCH_H_ | 
 | #define CERES_INTERNAL_LINE_SEARCH_H_ | 
 |  | 
 | #ifndef CERES_NO_LINE_SEARCH_MINIMIZER | 
 |  | 
 | #include <vector> | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/port.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class Evaluator; | 
 |  | 
 | // Line search is another name for a one dimensional optimization | 
 | // algorithm. The name "line search" comes from the fact one | 
 | // dimensional optimization problems that arise as subproblems of | 
 | // general multidimensional optimization problems. | 
 | // | 
 | // While finding the exact minimum of a one dimensionl function is | 
 | // hard, instances of LineSearch find a point that satisfies a | 
 | // sufficient decrease condition. Depending on the particular | 
 | // condition used, we get a variety of different line search | 
 | // algorithms, e.g., Armijo, Wolfe etc. | 
 | class LineSearch { | 
 |  public: | 
 |   class Function; | 
 |  | 
 |   struct Options { | 
 |     Options() | 
 |         : interpolation_degree(1), | 
 |           use_higher_degree_interpolation_when_possible(false), | 
 |           sufficient_decrease(1e-4), | 
 |           min_relative_step_size_change(1e-3), | 
 |           max_relative_step_size_change(0.6), | 
 |           step_size_threshold(1e-9), | 
 |           function(NULL) {} | 
 |  | 
 |     // TODO(sameeragarwal): Replace this with enums which are common | 
 |     // across various line searches. | 
 |     // | 
 |     // Degree of the polynomial used to approximate the objective | 
 |     // function. Valid values are {0, 1, 2}. | 
 |     // | 
 |     // For Armijo line search | 
 |     // | 
 |     // 0: Bisection based backtracking search. | 
 |     // 1: Quadratic interpolation. | 
 |     // 2: Cubic interpolation. | 
 |     int interpolation_degree; | 
 |  | 
 |     // Usually its possible to increase the degree of the | 
 |     // interpolation polynomial by storing and using an extra point. | 
 |     bool use_higher_degree_interpolation_when_possible; | 
 |  | 
 |     // Armijo line search parameters. | 
 |  | 
 |     // Solving the line search problem exactly is computationally | 
 |     // prohibitive. Fortunately, line search based optimization | 
 |     // algorithms can still guarantee convergence if instead of an | 
 |     // exact solution, the line search algorithm returns a solution | 
 |     // which decreases the value of the objective function | 
 |     // sufficiently. More precisely, we are looking for a step_size | 
 |     // s.t. | 
 |     // | 
 |     //  f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size | 
 |     double sufficient_decrease; | 
 |  | 
 |     // In each iteration of the Armijo line search, | 
 |     // | 
 |     // new_step_size >= min_relative_step_size_change * step_size | 
 |     double min_relative_step_size_change; | 
 |  | 
 |     // In each iteration of the Armijo line search, | 
 |     // | 
 |     // new_step_size <= max_relative_step_size_change * step_size | 
 |     double max_relative_step_size_change; | 
 |  | 
 |     // If during the line search, the step_size falls below this | 
 |     // value, it is truncated to zero. | 
 |     double step_size_threshold; | 
 |  | 
 |     // The one dimensional function that the line search algorithm | 
 |     // minimizes. | 
 |     Function* function; | 
 |   }; | 
 |  | 
 |   // An object used by the line search to access the function values | 
 |   // and gradient of the one dimensional function being optimized. | 
 |   // | 
 |   // In practice, this object will provide access to the objective | 
 |   // function value and the directional derivative of the underlying | 
 |   // optimization problem along a specific search direction. | 
 |   // | 
 |   // See LineSearchFunction for an example implementation. | 
 |   class Function { | 
 |    public: | 
 |     virtual ~Function() {} | 
 |     // Evaluate the line search objective | 
 |     // | 
 |     //   f(x) = p(position + x * direction) | 
 |     // | 
 |     // Where, p is the objective function of the general optimization | 
 |     // problem. | 
 |     // | 
 |     // g is the gradient f'(x) at x. | 
 |     // | 
 |     // f must not be null. The gradient is computed only if g is not null. | 
 |     virtual bool Evaluate(double x, double* f, double* g) = 0; | 
 |   }; | 
 |  | 
 |   // Result of the line search. | 
 |   struct Summary { | 
 |     Summary() | 
 |         : success(false), | 
 |           optimal_step_size(0.0), | 
 |           num_evaluations(0) {} | 
 |  | 
 |     bool success; | 
 |     double optimal_step_size; | 
 |     int num_evaluations; | 
 |   }; | 
 |  | 
 |   virtual ~LineSearch() {} | 
 |  | 
 |   // Perform the line search. | 
 |   // | 
 |   // initial_step_size must be a positive number. | 
 |   // | 
 |   // initial_cost and initial_gradient are the values and gradient of | 
 |   // the function at zero. | 
 |   // summary must not be null and will contain the result of the line | 
 |   // search. | 
 |   // | 
 |   // Summary::success is true if a non-zero step size is found. | 
 |   virtual void Search(const LineSearch::Options& options, | 
 |                       double initial_step_size, | 
 |                       double initial_cost, | 
 |                       double initial_gradient, | 
 |                       Summary* summary) = 0; | 
 | }; | 
 |  | 
 | class LineSearchFunction : public LineSearch::Function { | 
 |  public: | 
 |   explicit LineSearchFunction(Evaluator* evaluator); | 
 |   virtual ~LineSearchFunction() {} | 
 |   void Init(const Vector& position, const Vector& direction); | 
 |   virtual bool Evaluate(const double x, double* f, double* g); | 
 |  | 
 |  private: | 
 |   Evaluator* evaluator_; | 
 |   Vector position_; | 
 |   Vector direction_; | 
 |  | 
 |   // evaluation_point = Evaluator::Plus(position_,  x * direction_); | 
 |   Vector evaluation_point_; | 
 |  | 
 |   // scaled_direction = x * direction_; | 
 |   Vector scaled_direction_; | 
 |   Vector gradient_; | 
 | }; | 
 |  | 
 | // Backtracking and interpolation based Armijo line search. This | 
 | // implementation is based on the Armijo line search that ships in the | 
 | // minFunc package by Mark Schmidt. | 
 | // | 
 | // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html | 
 | class ArmijoLineSearch : public LineSearch { | 
 |  public: | 
 |   virtual ~ArmijoLineSearch() {} | 
 |   virtual void Search(const LineSearch::Options& options, | 
 |                       double initial_step_size, | 
 |                       double initial_cost, | 
 |                       double initial_gradient, | 
 |                       Summary* summary); | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_NO_LINE_SEARCH_MINIMIZER | 
 | #endif  // CERES_INTERNAL_LINE_SEARCH_H_ |