| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/low_rank_inverse_hessian.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | LowRankInverseHessian::LowRankInverseHessian(int num_parameters, | 
 |                                              int max_num_corrections) | 
 |     : num_parameters_(num_parameters), | 
 |       max_num_corrections_(max_num_corrections), | 
 |       num_corrections_(0), | 
 |       diagonal_(1.0), | 
 |       delta_x_history_(num_parameters, max_num_corrections), | 
 |       delta_gradient_history_(num_parameters, max_num_corrections), | 
 |       delta_x_dot_delta_gradient_(max_num_corrections) { | 
 | } | 
 |  | 
 | bool LowRankInverseHessian::Update(const Vector& delta_x, | 
 |                                    const Vector& delta_gradient) { | 
 |   const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient); | 
 |   if (delta_x_dot_delta_gradient <= 1e-10) { | 
 |     VLOG(2) << "Skipping LBFGS Update. " << delta_x_dot_delta_gradient; | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (num_corrections_ == max_num_corrections_) { | 
 |     // TODO(sameeragarwal): This can be done more efficiently using | 
 |     // a circular buffer/indexing scheme, but for simplicity we will | 
 |     // do the expensive copy for now. | 
 |     delta_x_history_.block(0, 0, num_parameters_, max_num_corrections_ - 2) = | 
 |         delta_x_history_ | 
 |         .block(0, 1, num_parameters_, max_num_corrections_ - 1); | 
 |  | 
 |     delta_gradient_history_ | 
 |         .block(0, 0, num_parameters_, max_num_corrections_ - 2) = | 
 |         delta_gradient_history_ | 
 |         .block(0, 1, num_parameters_, max_num_corrections_ - 1); | 
 |  | 
 |     delta_x_dot_delta_gradient_.head(num_corrections_ - 2) = | 
 |         delta_x_dot_delta_gradient_.tail(num_corrections_ - 1); | 
 |   } else { | 
 |     ++num_corrections_; | 
 |   } | 
 |  | 
 |   delta_x_history_.col(num_corrections_ - 1) = delta_x; | 
 |   delta_gradient_history_.col(num_corrections_ - 1) = delta_gradient; | 
 |   delta_x_dot_delta_gradient_(num_corrections_ - 1) = | 
 |       delta_x_dot_delta_gradient; | 
 |   diagonal_ = delta_x_dot_delta_gradient / delta_gradient.squaredNorm(); | 
 |   return true; | 
 | } | 
 |  | 
 | void LowRankInverseHessian::RightMultiply(const double* x_ptr, | 
 |                                           double* y_ptr) const { | 
 |   ConstVectorRef gradient(x_ptr, num_parameters_); | 
 |   VectorRef search_direction(y_ptr, num_parameters_); | 
 |  | 
 |   search_direction = gradient; | 
 |  | 
 |   Vector alpha(num_corrections_); | 
 |  | 
 |   for (int i = num_corrections_ - 1; i >= 0; --i) { | 
 |     alpha(i) = delta_x_history_.col(i).dot(search_direction) / | 
 |         delta_x_dot_delta_gradient_(i); | 
 |     search_direction -= alpha(i) * delta_gradient_history_.col(i); | 
 |   } | 
 |  | 
 |   search_direction *= diagonal_; | 
 |  | 
 |   for (int i = 0; i < num_corrections_; ++i) { | 
 |     const double beta = delta_gradient_history_.col(i).dot(search_direction) / | 
 |         delta_x_dot_delta_gradient_(i); | 
 |     search_direction += delta_x_history_.col(i) * (alpha(i) - beta); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |