| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2013 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #ifndef CERES_INTERNAL_PRECONDITIONER_H_ | 
 | #define CERES_INTERNAL_PRECONDITIONER_H_ | 
 |  | 
 | #include <vector> | 
 | #include "ceres/casts.h" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/linear_operator.h" | 
 | #include "ceres/sparse_matrix.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class BlockSparseMatrix; | 
 | class SparseMatrix; | 
 |  | 
 | class Preconditioner : public LinearOperator { | 
 |  public: | 
 |   struct Options { | 
 |     Options() | 
 |         : type(JACOBI), | 
 |           sparse_linear_algebra_library(SUITE_SPARSE), | 
 |           num_threads(1), | 
 |           row_block_size(Eigen::Dynamic), | 
 |           e_block_size(Eigen::Dynamic), | 
 |           f_block_size(Eigen::Dynamic) { | 
 |     } | 
 |  | 
 |     PreconditionerType type; | 
 |  | 
 |     SparseLinearAlgebraLibraryType sparse_linear_algebra_library; | 
 |  | 
 |     // If possible, how many threads the preconditioner can use. | 
 |     int num_threads; | 
 |  | 
 |     // Hints about the order in which the parameter blocks should be | 
 |     // eliminated by the linear solver. | 
 |     // | 
 |     // For example if elimination_groups is a vector of size k, then | 
 |     // the linear solver is informed that it should eliminate the | 
 |     // parameter blocks 0 ... elimination_groups[0] - 1 first, and | 
 |     // then elimination_groups[0] ... elimination_groups[1] - 1 and so | 
 |     // on. Within each elimination group, the linear solver is free to | 
 |     // choose how the parameter blocks are ordered. Different linear | 
 |     // solvers have differing requirements on elimination_groups. | 
 |     // | 
 |     // The most common use is for Schur type solvers, where there | 
 |     // should be at least two elimination groups and the first | 
 |     // elimination group must form an independent set in the normal | 
 |     // equations. The first elimination group corresponds to the | 
 |     // num_eliminate_blocks in the Schur type solvers. | 
 |     vector<int> elimination_groups; | 
 |  | 
 |     // If the block sizes in a BlockSparseMatrix are fixed, then in | 
 |     // some cases the Schur complement based solvers can detect and | 
 |     // specialize on them. | 
 |     // | 
 |     // It is expected that these parameters are set programmatically | 
 |     // rather than manually. | 
 |     // | 
 |     // Please see schur_complement_solver.h and schur_eliminator.h for | 
 |     // more details. | 
 |     int row_block_size; | 
 |     int e_block_size; | 
 |     int f_block_size; | 
 |   }; | 
 |  | 
 |   virtual ~Preconditioner(); | 
 |  | 
 |   // Update the numerical value of the preconditioner for the linear | 
 |   // system: | 
 |   // | 
 |   //  |   A   | x = |b| | 
 |   //  |diag(D)|     |0| | 
 |   // | 
 |   // for some vector b. It is important that the matrix A have the | 
 |   // same block structure as the one used to construct this object. | 
 |   // | 
 |   // D can be NULL, in which case its interpreted as a diagonal matrix | 
 |   // of size zero. | 
 |   virtual bool Update(const LinearOperator& A, const double* D) = 0; | 
 |  | 
 |   // LinearOperator interface. Since the operator is symmetric, | 
 |   // LeftMultiply and num_cols are just calls to RightMultiply and | 
 |   // num_rows respectively. Update() must be called before | 
 |   // RightMultiply can be called. | 
 |   virtual void RightMultiply(const double* x, double* y) const = 0; | 
 |   virtual void LeftMultiply(const double* x, double* y) const { | 
 |     return RightMultiply(x, y); | 
 |   } | 
 |  | 
 |   virtual int num_rows() const = 0; | 
 |   virtual int num_cols() const { | 
 |     return num_rows(); | 
 |   } | 
 | }; | 
 |  | 
 | // This templated subclass of Preconditioner serves as a base class for | 
 | // other preconditioners that depend on the particular matrix layout of | 
 | // the underlying linear operator. | 
 | template <typename MatrixType> | 
 | class TypedPreconditioner : public Preconditioner { | 
 |  public: | 
 |   virtual ~TypedPreconditioner() {} | 
 |   virtual bool Update(const LinearOperator& A, const double* D) { | 
 |     return UpdateImpl(*down_cast<const MatrixType*>(&A), D); | 
 |   } | 
 |  | 
 |  private: | 
 |   virtual bool UpdateImpl(const MatrixType& A, const double* D) = 0; | 
 | }; | 
 |  | 
 | // Preconditioners that depend on acccess to the low level structure | 
 | // of a SparseMatrix. | 
 | typedef TypedPreconditioner<SparseMatrix>              SparseMatrixPreconditioner;               // NOLINT | 
 | typedef TypedPreconditioner<BlockSparseMatrix>         BlockSparseMatrixPreconditioner;          // NOLINT | 
 | typedef TypedPreconditioner<CompressedRowSparseMatrix> CompressedRowSparseMatrixPreconditioner;  // NOLINT | 
 |  | 
 | // Wrap a SparseMatrix object as a preconditioner. | 
 | class SparseMatrixPreconditionerWrapper : public SparseMatrixPreconditioner { | 
 |  public: | 
 |   // Wrapper does NOT take ownership of the matrix pointer. | 
 |   explicit SparseMatrixPreconditionerWrapper(const SparseMatrix* matrix); | 
 |   virtual ~SparseMatrixPreconditionerWrapper(); | 
 |  | 
 |   // Preconditioner interface | 
 |   virtual void RightMultiply(const double* x, double* y) const; | 
 |   virtual int num_rows() const; | 
 |  | 
 |  private: | 
 |   virtual bool UpdateImpl(const SparseMatrix& A, const double* D); | 
 |   const SparseMatrix* matrix_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_PRECONDITIONER_H_ |