|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  |  | 
|  | #include "ceres/block_jacobi_preconditioner.h" | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/block_random_access_diagonal_matrix.h" | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | BlockSparseJacobiPreconditioner::BlockSparseJacobiPreconditioner( | 
|  | const BlockSparseMatrix& A) { | 
|  | const CompressedRowBlockStructure* bs = A.block_structure(); | 
|  | std::vector<int> blocks(bs->cols.size()); | 
|  | for (int i = 0; i < blocks.size(); ++i) { | 
|  | blocks[i] = bs->cols[i].size; | 
|  | } | 
|  |  | 
|  | m_ = std::make_unique<BlockRandomAccessDiagonalMatrix>(blocks); | 
|  | } | 
|  |  | 
|  | BlockSparseJacobiPreconditioner::~BlockSparseJacobiPreconditioner() = default; | 
|  |  | 
|  | bool BlockSparseJacobiPreconditioner::UpdateImpl(const BlockSparseMatrix& A, | 
|  | const double* D) { | 
|  | const CompressedRowBlockStructure* bs = A.block_structure(); | 
|  | const double* values = A.values(); | 
|  | m_->SetZero(); | 
|  | for (int i = 0; i < bs->rows.size(); ++i) { | 
|  | const int row_block_size = bs->rows[i].block.size; | 
|  | const std::vector<Cell>& cells = bs->rows[i].cells; | 
|  | for (const auto& cell : cells) { | 
|  | const int block_id = cell.block_id; | 
|  | const int col_block_size = bs->cols[block_id].size; | 
|  |  | 
|  | int r, c, row_stride, col_stride; | 
|  | CellInfo* cell_info = | 
|  | m_->GetCell(block_id, block_id, &r, &c, &row_stride, &col_stride); | 
|  | MatrixRef m(cell_info->values, row_stride, col_stride); | 
|  | ConstMatrixRef b(values + cell.position, row_block_size, col_block_size); | 
|  | m.block(r, c, col_block_size, col_block_size) += b.transpose() * b; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D != nullptr) { | 
|  | // Add the diagonal. | 
|  | int position = 0; | 
|  | for (int i = 0; i < bs->cols.size(); ++i) { | 
|  | const int block_size = bs->cols[i].size; | 
|  | int r, c, row_stride, col_stride; | 
|  | CellInfo* cell_info = m_->GetCell(i, i, &r, &c, &row_stride, &col_stride); | 
|  | MatrixRef m(cell_info->values, row_stride, col_stride); | 
|  | m.block(r, c, block_size, block_size).diagonal() += | 
|  | ConstVectorRef(D + position, block_size).array().square().matrix(); | 
|  | position += block_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | m_->Invert(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | BlockCRSJacobiPreconditioner::BlockCRSJacobiPreconditioner( | 
|  | const CompressedRowSparseMatrix& A) { | 
|  | auto& col_blocks = A.col_blocks(); | 
|  |  | 
|  | // Compute the number of non-zeros in the preconditioner. This is needed so | 
|  | // that we can construct the CompressedRowSparseMatrix. | 
|  | int m_nnz = 0; | 
|  | for (int col_block_size : col_blocks) { | 
|  | m_nnz += col_block_size * col_block_size; | 
|  | } | 
|  |  | 
|  | m_ = std::make_unique<CompressedRowSparseMatrix>( | 
|  | A.num_cols(), A.num_cols(), m_nnz); | 
|  |  | 
|  | const int num_col_blocks = col_blocks.size(); | 
|  |  | 
|  | // Populate the sparsity structure of the preconditioner matrix. | 
|  | int* m_cols = m_->mutable_cols(); | 
|  | int* m_rows = m_->mutable_rows(); | 
|  | m_rows[0] = 0; | 
|  | for (int i = 0, col = 0, idx = 0; i < num_col_blocks; ++i) { | 
|  | // For each column block populate a diagonal block in the preconditioner. | 
|  | // Not that the because of the way the CompressedRowSparseMatrix format | 
|  | // works, the entire diagonal block is laid out contiguously in memory as a | 
|  | // row-major matrix. We will use this when updating the block. | 
|  | const int col_block_size = col_blocks[i]; | 
|  | for (int j = 0; j < col_block_size; ++j) { | 
|  | for (int k = 0; k < col_block_size; ++k, ++idx) { | 
|  | m_cols[idx] = col + k; | 
|  | } | 
|  | m_rows[col + j + 1] = idx; | 
|  | } | 
|  | col += col_block_size; | 
|  | } | 
|  |  | 
|  | CHECK_EQ(m_rows[A.num_cols()], m_nnz); | 
|  | } | 
|  |  | 
|  | BlockCRSJacobiPreconditioner::~BlockCRSJacobiPreconditioner() = default; | 
|  |  | 
|  | bool BlockCRSJacobiPreconditioner::UpdateImpl( | 
|  | const CompressedRowSparseMatrix& A, const double* D) { | 
|  | const auto& col_blocks = A.col_blocks(); | 
|  | const int num_col_blocks = col_blocks.size(); | 
|  |  | 
|  | const int* a_rows = A.rows(); | 
|  | const int* a_cols = A.cols(); | 
|  | const double* a_values = A.values(); | 
|  |  | 
|  | m_->SetZero(); | 
|  | double* m_values = m_->mutable_values(); | 
|  | const int* m_rows = m_->rows(); | 
|  |  | 
|  | const int num_rows = A.num_rows(); | 
|  | // The following loop can likely be optimized by exploiting the fact that each | 
|  | // row block has exactly the same sparsity structure. | 
|  | for (int r = 0; r < num_rows; ++r) { | 
|  | int idx = a_rows[r]; | 
|  | while (idx < a_rows[r + 1]) { | 
|  | const int col = a_cols[idx]; | 
|  | const int col_block_size = m_rows[col + 1] - m_rows[col]; | 
|  | // We make use of the fact that the entire diagonal block is stored | 
|  | // contiguously in memory as a row-major matrix. | 
|  | MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size); | 
|  | ConstVectorRef b(a_values + idx, col_block_size); | 
|  | m.selfadjointView<Eigen::Upper>().rankUpdate(b); | 
|  | idx += col_block_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0, col = 0; i < num_col_blocks; ++i) { | 
|  | const int col_block_size = m_rows[col + 1] - m_rows[col]; | 
|  | MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size); | 
|  |  | 
|  | if (D != nullptr) { | 
|  | m.diagonal() += | 
|  | ConstVectorRef(D + col, col_block_size).array().square().matrix(); | 
|  | } | 
|  |  | 
|  | m = m.selfadjointView<Eigen::Upper>().llt().solve( | 
|  | Matrix::Identity(col_block_size, col_block_size)); | 
|  | col += col_block_size; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |