| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: joydeepb@cs.utexas.edu (Joydeep Biswas) | 
 |  | 
 | #include <iostream> | 
 | #include <memory> | 
 | #include <random> | 
 | #include <string> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "benchmark/benchmark.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/context_impl.h" | 
 | #include "ceres/cuda_sparse_matrix.h" | 
 | #include "ceres/cuda_vector.h" | 
 | #include "ceres/internal/config.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "gflags/gflags.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 | #include "cuda_runtime.h" | 
 | #endif | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | // TODO(Joydeep Biswas): Add a matrix of benchmark sizes to test. | 
 |  | 
 | namespace { | 
 | // Generate a synthetic BA-style Jacobian with n camera poses, m landmarks, n_d | 
 | // parameters per camera, m_d parameters per landmark, and k residuals per | 
 | // camera. | 
 | // TODO: Unify the synthetic Jacobian generation code with the code from | 
 | // schur_eliminator_benchmark.cc since they are very similar. | 
 | std::unique_ptr<BlockSparseMatrix> GenerateSyntheticJacobian( | 
 |     int n, int m, int n_d, int m_d, int k) { | 
 |   static const int kResidualSize = 2; | 
 |   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
 |   int c = 0; | 
 |   // Add column blocks for each camera. | 
 |   for (int i = 0; i < n; ++i) { | 
 |     bs->cols.push_back(Block(n_d, c)); | 
 |     c += n_d; | 
 |   } | 
 |   // Add column blocks for each landmark. | 
 |   for (int i = 0; i < m; ++i) { | 
 |     bs->cols.push_back(Block(m_d, c)); | 
 |     c += m_d; | 
 |   } | 
 |   // Total number of row blocks = k * n. | 
 |   bs->rows.resize(k * n); | 
 |   int values_offset = 0; | 
 |   std::mt19937 prng; | 
 |   std::uniform_real_distribution uniform_0_m(0.0, static_cast<double>(m)); | 
 |   // Generate structure of the Jacobian. | 
 |   // For n cameras: | 
 |   for (int i = 0; i < n; ++i) { | 
 |     const int camera_block_id = i; | 
 |     // For k residuals per camera: | 
 |     for (int j = 0; j < k; ++j) { | 
 |       // Pick the landmark of the residual randomly from [0, m). | 
 |       const int landmark_id = uniform_0_m(prng); | 
 |       const int landmark_block_id = n + landmark_id; | 
 |       const int row_idx = i * k + j; | 
 |       const int row = kResidualSize * row_idx; | 
 |       bs->rows[row_idx].block = Block(kResidualSize, row); | 
 |       bs->rows[row_idx].cells.resize(2); | 
 |       // The camera part of the jacobian of this residual. | 
 |       bs->rows[row_idx].cells[0] = Cell(camera_block_id, values_offset); | 
 |       values_offset += n_d * kResidualSize; | 
 |       // The landmark part of the jacobian of this residual. | 
 |       bs->rows[row_idx].cells[1] = Cell(landmark_block_id, values_offset); | 
 |       values_offset += m_d * kResidualSize; | 
 |     } | 
 |   } | 
 |   std::unique_ptr<BlockSparseMatrix> jacobian = | 
 |       std::make_unique<BlockSparseMatrix>(bs); | 
 |   VectorRef(jacobian->mutable_values(), jacobian->num_nonzeros()).setRandom(); | 
 |   return jacobian; | 
 | } | 
 | }  // namespace | 
 |  | 
 | DEFINE_int32(num_cameras, 1000, "Number of cameras."); | 
 | DEFINE_int32(num_landmarks, 10000, "Number of landmarks."); | 
 | DEFINE_int32(num_parameters_per_camera, 6, "Number of parameters per camera."); | 
 | DEFINE_int32(num_parameters_per_landmark, | 
 |              3, | 
 |              "Number of parameters per landmark."); | 
 | DEFINE_int32(num_residuals_per_camera, 100, "Number of residuals per camera."); | 
 |  | 
 | static void BM_CpuRightMultiplyAndAccumulate(benchmark::State& state) { | 
 |   // Perform setup here | 
 |   std::unique_ptr<BlockSparseMatrix> jacobian = | 
 |       GenerateSyntheticJacobian(FLAGS_num_cameras, | 
 |                                 FLAGS_num_landmarks, | 
 |                                 FLAGS_num_parameters_per_camera, | 
 |                                 FLAGS_num_parameters_per_landmark, | 
 |                                 FLAGS_num_residuals_per_camera); | 
 |   Vector x(jacobian->num_cols()); | 
 |   Vector y(jacobian->num_rows()); | 
 |   x.setRandom(); | 
 |   y.setRandom(); | 
 |   double sum = 0; | 
 |   for (auto _ : state) { | 
 |     // This code gets timed | 
 |     jacobian->RightMultiplyAndAccumulate(x.data(), y.data()); | 
 |     sum += y.norm(); | 
 |   } | 
 |   CHECK_NE(sum, 0.0); | 
 | } | 
 |  | 
 | static void BM_CpuLeftMultiplyAndAccumulate(benchmark::State& state) { | 
 |   // Perform setup here | 
 |   std::unique_ptr<BlockSparseMatrix> jacobian = | 
 |       GenerateSyntheticJacobian(FLAGS_num_cameras, | 
 |                                 FLAGS_num_landmarks, | 
 |                                 FLAGS_num_parameters_per_camera, | 
 |                                 FLAGS_num_parameters_per_landmark, | 
 |                                 FLAGS_num_residuals_per_camera); | 
 |   Vector x(jacobian->num_rows()); | 
 |   Vector y(jacobian->num_cols()); | 
 |   x.setRandom(); | 
 |   y.setRandom(); | 
 |   double sum = 0; | 
 |   for (auto _ : state) { | 
 |     // This code gets timed | 
 |     jacobian->LeftMultiplyAndAccumulate(x.data(), y.data()); | 
 |     sum += y.norm(); | 
 |   } | 
 |   CHECK_NE(sum, 0.0); | 
 | } | 
 |  | 
 | BENCHMARK(BM_CpuRightMultiplyAndAccumulate); | 
 | BENCHMARK(BM_CpuLeftMultiplyAndAccumulate); | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 | static void BM_CudaRightMultiplyAndAccumulate(benchmark::State& state) { | 
 |   // Perform setup here | 
 |   std::unique_ptr<BlockSparseMatrix> jacobian = | 
 |       GenerateSyntheticJacobian(FLAGS_num_cameras, | 
 |                                 FLAGS_num_landmarks, | 
 |                                 FLAGS_num_parameters_per_camera, | 
 |                                 FLAGS_num_parameters_per_landmark, | 
 |                                 FLAGS_num_residuals_per_camera); | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   context.InitCUDA(&message); | 
 |   CompressedRowSparseMatrix jacobian_crs( | 
 |       jacobian->num_rows(), jacobian->num_cols(), jacobian->num_nonzeros()); | 
 |   jacobian->ToCompressedRowSparseMatrix(&jacobian_crs); | 
 |   CudaSparseMatrix cuda_jacobian(&context, jacobian_crs); | 
 |   CudaVector cuda_x(&context, 0); | 
 |   CudaVector cuda_y(&context, 0); | 
 |  | 
 |   Vector x(jacobian->num_cols()); | 
 |   Vector y(jacobian->num_rows()); | 
 |   x.setRandom(); | 
 |   y.setRandom(); | 
 |  | 
 |   cuda_x.CopyFromCpu(x); | 
 |   cuda_y.CopyFromCpu(y); | 
 |   double sum = 0; | 
 |   for (auto _ : state) { | 
 |     // This code gets timed | 
 |     cuda_jacobian.RightMultiplyAndAccumulate(cuda_x, &cuda_y); | 
 |     sum += cuda_y.Norm(); | 
 |     CHECK_EQ(cudaDeviceSynchronize(), cudaSuccess); | 
 |   } | 
 |   CHECK_NE(sum, 0.0); | 
 | } | 
 |  | 
 | static void BM_CudaLeftMultiplyAndAccumulate(benchmark::State& state) { | 
 |   // Perform setup here | 
 |   std::unique_ptr<BlockSparseMatrix> jacobian = | 
 |       GenerateSyntheticJacobian(FLAGS_num_cameras, | 
 |                                 FLAGS_num_landmarks, | 
 |                                 FLAGS_num_parameters_per_camera, | 
 |                                 FLAGS_num_parameters_per_landmark, | 
 |                                 FLAGS_num_residuals_per_camera); | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   context.InitCUDA(&message); | 
 |   CompressedRowSparseMatrix jacobian_crs( | 
 |       jacobian->num_rows(), jacobian->num_cols(), jacobian->num_nonzeros()); | 
 |   jacobian->ToCompressedRowSparseMatrix(&jacobian_crs); | 
 |   CudaSparseMatrix cuda_jacobian(&context, jacobian_crs); | 
 |   CudaVector cuda_x(&context, 0); | 
 |   CudaVector cuda_y(&context, 0); | 
 |  | 
 |   Vector x(jacobian->num_rows()); | 
 |   Vector y(jacobian->num_cols()); | 
 |   x.setRandom(); | 
 |   y.setRandom(); | 
 |  | 
 |   cuda_x.CopyFromCpu(x); | 
 |   cuda_y.CopyFromCpu(y); | 
 |   double sum = 0; | 
 |   for (auto _ : state) { | 
 |     // This code gets timed | 
 |     cuda_jacobian.LeftMultiplyAndAccumulate(cuda_x, &cuda_y); | 
 |     sum += cuda_y.Norm(); | 
 |     CHECK_EQ(cudaDeviceSynchronize(), cudaSuccess); | 
 |   } | 
 |   CHECK_NE(sum, 0.0); | 
 | } | 
 |  | 
 | BENCHMARK(BM_CudaRightMultiplyAndAccumulate); | 
 | BENCHMARK(BM_CudaLeftMultiplyAndAccumulate); | 
 | #endif | 
 |  | 
 | BENCHMARK_MAIN(); | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | BENCHMARK_MAIN(); |