| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // System level tests for Ceres. The current suite of two tests. The | 
 | // first test is a small test based on Powell's Function. It is a | 
 | // scalar problem with 4 variables. The second problem is a bundle | 
 | // adjustment problem with 16 cameras and two thousand cameras. The | 
 | // first problem is to test the sanity test the factorization based | 
 | // solvers. The second problem is used to test the various | 
 | // combinations of solvers, orderings, preconditioners and | 
 | // multithreading. | 
 |  | 
 | #include <cmath> | 
 | #include <cstdio> | 
 | #include <cstdlib> | 
 | #include <string> | 
 |  | 
 | #include <glog/logging.h> | 
 | #include "ceres/file.h" | 
 | #include "gtest/gtest.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/test_util.h" | 
 | #include "ceres/autodiff_cost_function.h" | 
 | #include "ceres/problem.h" | 
 | #include "ceres/solver.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/rotation.h" | 
 |  | 
 | DECLARE_string(test_srcdir); | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Struct used for configuring the solver. | 
 | struct SolverConfig { | 
 |   SolverConfig(LinearSolverType linear_solver_type, | 
 |                SparseLinearAlgebraLibraryType sparse_linear_algebra_library, | 
 |                OrderingType ordering_type) | 
 |       : linear_solver_type(linear_solver_type), | 
 |         sparse_linear_algebra_library(sparse_linear_algebra_library), | 
 |         ordering_type(ordering_type), | 
 |         preconditioner_type(IDENTITY), | 
 |         num_threads(1) { | 
 |   } | 
 |  | 
 |   SolverConfig(LinearSolverType linear_solver_type, | 
 |                SparseLinearAlgebraLibraryType sparse_linear_algebra_library, | 
 |                OrderingType ordering_type, | 
 |                PreconditionerType preconditioner_type, | 
 |                int num_threads) | 
 |       : linear_solver_type(linear_solver_type), | 
 |         sparse_linear_algebra_library(sparse_linear_algebra_library), | 
 |         ordering_type(ordering_type), | 
 |         preconditioner_type(preconditioner_type), | 
 |         num_threads(num_threads) { | 
 |   } | 
 |  | 
 |   string ToString() const { | 
 |     return StringPrintf( | 
 |         "(%s, %s, %s, %s, %d)", | 
 |         LinearSolverTypeToString(linear_solver_type), | 
 |         SparseLinearAlgebraLibraryTypeToString(sparse_linear_algebra_library), | 
 |         OrderingTypeToString(ordering_type), | 
 |         PreconditionerTypeToString(preconditioner_type), | 
 |         num_threads); | 
 |   } | 
 |  | 
 |   LinearSolverType linear_solver_type; | 
 |   SparseLinearAlgebraLibraryType sparse_linear_algebra_library; | 
 |   OrderingType ordering_type; | 
 |   PreconditionerType preconditioner_type; | 
 |   int num_threads; | 
 | }; | 
 |  | 
 | // Templated function that given a set of solver configurations, | 
 | // instantiates a new copy of SystemTestProblem for each configuration | 
 | // and solves it. The solutions are expected to have residuals with | 
 | // coordinate-wise maximum absolute difference less than or equal to | 
 | // max_abs_difference. | 
 | // | 
 | // The template parameter SystemTestProblem is expected to implement | 
 | // the following interface. | 
 | // | 
 | //   class SystemTestProblem { | 
 | //     public: | 
 | //       SystemTestProblem(); | 
 | //       Problem* mutable_problem(); | 
 | //       Solver::Options* mutable_solver_options(); | 
 | //   }; | 
 | template <typename SystemTestProblem> | 
 | void RunSolversAndCheckTheyMatch(const vector<SolverConfig>& configurations, | 
 |                                  const double max_abs_difference) { | 
 |   int num_configurations = configurations.size(); | 
 |   vector<SystemTestProblem*> problems; | 
 |   vector<Solver::Summary> summaries(num_configurations); | 
 |  | 
 |   for (int i = 0; i < num_configurations; ++i) { | 
 |     SystemTestProblem* system_test_problem = new SystemTestProblem(); | 
 |  | 
 |     const SolverConfig& config = configurations[i]; | 
 |  | 
 |     Solver::Options& options = *(system_test_problem->mutable_solver_options()); | 
 |     options.linear_solver_type = config.linear_solver_type; | 
 |     options.sparse_linear_algebra_library = | 
 |         config.sparse_linear_algebra_library; | 
 |     options.ordering_type = config.ordering_type; | 
 |     options.preconditioner_type = config.preconditioner_type; | 
 |     options.num_threads = config.num_threads; | 
 |     options.num_linear_solver_threads = config.num_threads; | 
 |     options.return_final_residuals = true; | 
 |  | 
 |     if (options.ordering_type == SCHUR || options.ordering_type == NATURAL) { | 
 |       options.ordering.clear(); | 
 |     } | 
 |  | 
 |     if (options.ordering_type == SCHUR) { | 
 |       options.num_eliminate_blocks = 0; | 
 |     } | 
 |  | 
 |     LOG(INFO) << "Running solver configuration: " | 
 |               << config.ToString(); | 
 |  | 
 |     Solve(options, | 
 |           system_test_problem->mutable_problem(), | 
 |           &summaries[i]); | 
 |  | 
 |     CHECK_NE(summaries[i].termination_type, ceres::NUMERICAL_FAILURE) | 
 |         << "Solver configuration " << i << " failed."; | 
 |     problems.push_back(system_test_problem); | 
 |  | 
 |     // Compare the resulting solutions to each other. Arbitrarily take | 
 |     // SPARSE_NORMAL_CHOLESKY as the golden solve. We compare | 
 |     // solutions by comparing their residual vectors. We do not | 
 |     // compare parameter vectors because it is much more brittle and | 
 |     // error prone to do so, since the same problem can have nearly | 
 |     // the same residuals at two completely different positions in | 
 |     // parameter space. | 
 |     if (i > 0) { | 
 |       const vector<double>& reference_residuals = summaries[0].final_residuals; | 
 |       const vector<double>& current_residuals = summaries[i].final_residuals; | 
 |  | 
 |       for (int j = 0; j < reference_residuals.size(); ++j) { | 
 |         EXPECT_NEAR(current_residuals[j], | 
 |                     reference_residuals[j], | 
 |                     max_abs_difference) | 
 |             << "Not close enough residual:" << j | 
 |             << " reference " << reference_residuals[j] | 
 |             << " current " << current_residuals[j]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_configurations; ++i) { | 
 |     delete problems[i]; | 
 |   } | 
 | } | 
 |  | 
 | // This class implements the SystemTestProblem interface and provides | 
 | // access to an implementation of Powell's singular function. | 
 | // | 
 | //   F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2) | 
 | // | 
 | //   f1 = x1 + 10*x2; | 
 | //   f2 = sqrt(5) * (x3 - x4) | 
 | //   f3 = (x2 - 2*x3)^2 | 
 | //   f4 = sqrt(10) * (x1 - x4)^2 | 
 | // | 
 | // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1. | 
 | // The minimum is 0 at (x1, x2, x3, x4) = 0. | 
 | // | 
 | // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S. | 
 | // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software, | 
 | // Vol 7(1), March 1981. | 
 | class PowellsFunction { | 
 |  public: | 
 |   PowellsFunction() { | 
 |     x_[0] =  3.0; | 
 |     x_[1] = -1.0; | 
 |     x_[2] =  0.0; | 
 |     x_[3] =  1.0; | 
 |  | 
 |     problem_.AddResidualBlock( | 
 |         new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x_[0], &x_[1]); | 
 |     problem_.AddResidualBlock( | 
 |         new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x_[2], &x_[3]); | 
 |     problem_.AddResidualBlock( | 
 |         new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x_[1], &x_[2]); | 
 |     problem_.AddResidualBlock( | 
 |         new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x_[0], &x_[3]); | 
 |  | 
 |     options_.max_num_iterations = 10; | 
 |   } | 
 |  | 
 |   Problem* mutable_problem() { return &problem_; } | 
 |   Solver::Options* mutable_solver_options() { return &options_; } | 
 |  | 
 |  private: | 
 |   // Templated functions used for automatically differentiated cost | 
 |   // functions. | 
 |   class F1 { | 
 |    public: | 
 |     template <typename T> bool operator()(const T* const x1, | 
 |                                           const T* const x2, | 
 |                                           T* residual) const { | 
 |       // f1 = x1 + 10 * x2; | 
 |       *residual = *x1 + T(10.0) * *x2; | 
 |       return true; | 
 |     } | 
 |   }; | 
 |  | 
 |   class F2 { | 
 |    public: | 
 |     template <typename T> bool operator()(const T* const x3, | 
 |                                           const T* const x4, | 
 |                                           T* residual) const { | 
 |       // f2 = sqrt(5) (x3 - x4) | 
 |       *residual = T(sqrt(5.0)) * (*x3 - *x4); | 
 |       return true; | 
 |     } | 
 |   }; | 
 |  | 
 |   class F3 { | 
 |    public: | 
 |     template <typename T> bool operator()(const T* const x2, | 
 |                                           const T* const x4, | 
 |                                           T* residual) const { | 
 |       // f3 = (x2 - 2 x3)^2 | 
 |       residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]); | 
 |       return true; | 
 |     } | 
 |   }; | 
 |  | 
 |   class F4 { | 
 |    public: | 
 |     template <typename T> bool operator()(const T* const x1, | 
 |                                           const T* const x4, | 
 |                                           T* residual) const { | 
 |       // f4 = sqrt(10) (x1 - x4)^2 | 
 |       residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]); | 
 |       return true; | 
 |     } | 
 |   }; | 
 |  | 
 |   double x_[4]; | 
 |   Problem problem_; | 
 |   Solver::Options options_; | 
 | }; | 
 |  | 
 | TEST(SystemTest, PowellsFunction) { | 
 |   vector<SolverConfig> configs; | 
 | #define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering) \ | 
 |   configs.push_back(SolverConfig(linear_solver,                           \ | 
 |                                  sparse_linear_algebra_library,           \ | 
 |                                  ordering)) | 
 |  | 
 |   CONFIGURE(DENSE_QR,    SUITE_SPARSE, NATURAL); | 
 |   CONFIGURE(DENSE_SCHUR, SUITE_SPARSE, SCHUR); | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, NATURAL); | 
 |   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, SCHUR); | 
 | #endif  // CERES_NO_SUITESPARSE | 
 |  | 
 | #ifndef CERES_NO_CXSPARSE | 
 |   CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, NATURAL); | 
 |   CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, SCHUR); | 
 | #endif  // CERES_NO_CXSPARSE | 
 |  | 
 |   CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, SCHUR); | 
 |  | 
 | #undef CONFIGURE | 
 |  | 
 |   const double kMaxAbsoluteDifference = 1e-8; | 
 |   RunSolversAndCheckTheyMatch<PowellsFunction>(configs, kMaxAbsoluteDifference); | 
 | } | 
 |  | 
 | // This class implements the SystemTestProblem interface and provides | 
 | // access to a bundle adjustment problem. It is based on | 
 | // examples/bundle_adjustment_example.cc. Currently a small 16 camera | 
 | // problem is hard coded in the constructor. Going forward we may | 
 | // extend this to a larger number of problems. | 
 | class BundleAdjustmentProblem { | 
 |  public: | 
 |   BundleAdjustmentProblem() { | 
 |     const string input_file = | 
 |         JoinPath(FLAGS_test_srcdir, | 
 |                        "problem-16-22106-pre.txt"); // NOLINT | 
 |  | 
 |     ReadData(input_file); | 
 |     BuildProblem(); | 
 |   } | 
 |  | 
 |   ~BundleAdjustmentProblem() { | 
 |     delete []point_index_; | 
 |     delete []camera_index_; | 
 |     delete []observations_; | 
 |     delete []parameters_; | 
 |   } | 
 |  | 
 |   Problem* mutable_problem() { return &problem_; } | 
 |   Solver::Options* mutable_solver_options() { return &options_; } | 
 |  | 
 |   int num_cameras()            const { return num_cameras_;        } | 
 |   int num_points()             const { return num_points_;         } | 
 |   int num_observations()       const { return num_observations_;   } | 
 |   const int* point_index()     const { return point_index_;  } | 
 |   const int* camera_index()    const { return camera_index_; } | 
 |   const double* observations() const { return observations_; } | 
 |   double* mutable_cameras() { return parameters_; } | 
 |   double* mutable_points() { return parameters_  + 9 * num_cameras_; } | 
 |  | 
 |  private: | 
 |   void ReadData(const string& filename) { | 
 |     FILE * fptr = fopen(filename.c_str(), "r"); | 
 |  | 
 |     if (!fptr) { | 
 |       LOG(FATAL) << "File Error: unable to open file " << filename; | 
 |     }; | 
 |  | 
 |     // This will die horribly on invalid files. Them's the breaks. | 
 |     FscanfOrDie(fptr, "%d", &num_cameras_); | 
 |     FscanfOrDie(fptr, "%d", &num_points_); | 
 |     FscanfOrDie(fptr, "%d", &num_observations_); | 
 |  | 
 |     VLOG(1) << "Header: " << num_cameras_ | 
 |             << " " << num_points_ | 
 |             << " " << num_observations_; | 
 |  | 
 |     point_index_ = new int[num_observations_]; | 
 |     camera_index_ = new int[num_observations_]; | 
 |     observations_ = new double[2 * num_observations_]; | 
 |  | 
 |     num_parameters_ = 9 * num_cameras_ + 3 * num_points_; | 
 |     parameters_ = new double[num_parameters_]; | 
 |  | 
 |     for (int i = 0; i < num_observations_; ++i) { | 
 |       FscanfOrDie(fptr, "%d", camera_index_ + i); | 
 |       FscanfOrDie(fptr, "%d", point_index_ + i); | 
 |       for (int j = 0; j < 2; ++j) { | 
 |         FscanfOrDie(fptr, "%lf", observations_ + 2*i + j); | 
 |       } | 
 |     } | 
 |  | 
 |     for (int i = 0; i < num_parameters_; ++i) { | 
 |       FscanfOrDie(fptr, "%lf", parameters_ + i); | 
 |     } | 
 |   } | 
 |  | 
 |   void BuildProblem() { | 
 |     double* points = mutable_points(); | 
 |     double* cameras = mutable_cameras(); | 
 |  | 
 |     for (int i = 0; i < num_observations(); ++i) { | 
 |       // Each Residual block takes a point and a camera as input and | 
 |       // outputs a 2 dimensional residual. | 
 |       CostFunction* cost_function = | 
 |           new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>( | 
 |               new BundlerResidual(observations_[2*i + 0], | 
 |                                   observations_[2*i + 1])); | 
 |  | 
 |       // Each observation correponds to a pair of a camera and a point | 
 |       // which are identified by camera_index()[i] and | 
 |       // point_index()[i] respectively. | 
 |       double* camera = cameras + 9 * camera_index_[i]; | 
 |       double* point = points + 3 * point_index()[i]; | 
 |       problem_.AddResidualBlock(cost_function, NULL, camera, point); | 
 |     } | 
 |  | 
 |     // The points come before the cameras. | 
 |     for (int i = 0; i < num_points_; ++i) { | 
 |       options_.ordering.push_back(points + 3 * i); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < num_cameras_; ++i) { | 
 |       options_.ordering.push_back(cameras + 9 * i); | 
 |     } | 
 |  | 
 |     options_.num_eliminate_blocks = num_points(); | 
 |     options_.max_num_iterations = 25; | 
 |     options_.function_tolerance = 1e-10; | 
 |     options_.gradient_tolerance = 1e-10; | 
 |     options_.parameter_tolerance = 1e-10; | 
 |   } | 
 |  | 
 |   template<typename T> | 
 |   void FscanfOrDie(FILE *fptr, const char *format, T *value) { | 
 |     int num_scanned = fscanf(fptr, format, value); | 
 |     if (num_scanned != 1) { | 
 |       LOG(FATAL) << "Invalid UW data file."; | 
 |     } | 
 |   } | 
 |  | 
 |   // Templated pinhole camera model.  The camera is parameterized | 
 |   // using 9 parameters. 3 for rotation, 3 for translation, 1 for | 
 |   // focal length and 2 for radial distortion. The principal point is | 
 |   // not modeled (i.e. it is assumed be located at the image center). | 
 |   struct BundlerResidual { | 
 |     // (u, v): the position of the observation with respect to the image | 
 |     // center point. | 
 |     BundlerResidual(double u, double v): u(u), v(v) {} | 
 |  | 
 |     template <typename T> | 
 |     bool operator()(const T* const camera, | 
 |                     const T* const point, | 
 |                     T* residuals) const { | 
 |       T p[3]; | 
 |       AngleAxisRotatePoint(camera, point, p); | 
 |  | 
 |       // Add the translation vector | 
 |       p[0] += camera[3]; | 
 |       p[1] += camera[4]; | 
 |       p[2] += camera[5]; | 
 |  | 
 |       const T& focal = camera[6]; | 
 |       const T& l1 = camera[7]; | 
 |       const T& l2 = camera[8]; | 
 |  | 
 |       // Compute the center of distortion.  The sign change comes from | 
 |       // the camera model that Noah Snavely's Bundler assumes, whereby | 
 |       // the camera coordinate system has a negative z axis. | 
 |       T xp = - focal * p[0] / p[2]; | 
 |       T yp = - focal * p[1] / p[2]; | 
 |  | 
 |       // Apply second and fourth order radial distortion. | 
 |       T r2 = xp*xp + yp*yp; | 
 |       T distortion = T(1.0) + r2  * (l1 + l2  * r2); | 
 |  | 
 |       residuals[0] = distortion * xp - T(u); | 
 |       residuals[1] = distortion * yp - T(v); | 
 |  | 
 |       return true; | 
 |     } | 
 |  | 
 |     double u; | 
 |     double v; | 
 |   }; | 
 |  | 
 |  | 
 |   Problem problem_; | 
 |   Solver::Options options_; | 
 |  | 
 |   int num_cameras_; | 
 |   int num_points_; | 
 |   int num_observations_; | 
 |   int num_parameters_; | 
 |  | 
 |   int* point_index_; | 
 |   int* camera_index_; | 
 |   double* observations_; | 
 |   // The parameter vector is laid out as follows | 
 |   // [camera_1, ..., camera_n, point_1, ..., point_m] | 
 |   double* parameters_; | 
 | }; | 
 |  | 
 | TEST(SystemTest, BundleAdjustmentProblem) { | 
 |   vector<SolverConfig> configs; | 
 |  | 
 | #define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering, preconditioner, threads) \ | 
 |   configs.push_back(SolverConfig(linear_solver,                         \ | 
 |                                  sparse_linear_algebra_library,         \ | 
 |                                  ordering,                              \ | 
 |                                  preconditioner,                        \ | 
 |                                  threads)) | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, NATURAL, IDENTITY, 1); | 
 |   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, USER,    IDENTITY, 1); | 
 |   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, SCHUR,   IDENTITY, 1); | 
 |  | 
 |   CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, USER,    IDENTITY, 1); | 
 |   CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, SCHUR,   IDENTITY, 1); | 
 | #endif  // CERES_NO_SUITESPARSE | 
 |  | 
 | #ifndef CERES_NO_CXSPARSE | 
 |   CONFIGURE(SPARSE_SCHUR,           CX_SPARSE, USER,    IDENTITY, 1); | 
 |   CONFIGURE(SPARSE_SCHUR,           CX_SPARSE, SCHUR,   IDENTITY, 1); | 
 | #endif  // CERES_NO_CXSPARSE | 
 |  | 
 |   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, USER,    IDENTITY, 1); | 
 |   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, SCHUR,   IDENTITY, 1); | 
 |  | 
 |   CONFIGURE(CGNR,                   SUITE_SPARSE, USER,    JACOBI, 1); | 
 |  | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, USER,    JACOBI, 1); | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, USER,    SCHUR_JACOBI, 1); | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, USER,    CLUSTER_JACOBI, 1); | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, USER,    CLUSTER_TRIDIAGONAL, 1); | 
 | #endif  // CERES_NO_SUITESPARSE | 
 |  | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, SCHUR,   JACOBI, 1); | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, SCHUR,   SCHUR_JACOBI, 1); | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, SCHUR,   CLUSTER_JACOBI, 1); | 
 |   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, SCHUR,   CLUSTER_TRIDIAGONAL, 1); | 
 | #endif  // CERES_NO_SUITESPARSE | 
 |  | 
 | #undef CONFIGURE | 
 |  | 
 |   // Single threaded evaluators and linear solvers. | 
 |   const double kMaxAbsoluteDifference = 1e-4; | 
 |   RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, | 
 |                                                        kMaxAbsoluteDifference); | 
 |  | 
 | #ifdef CERES_USE_OPENMP | 
 |   // Multithreaded evaluators and linear solvers. | 
 |   for (int i = 0; i < configs.size(); ++i) { | 
 |     configs[i].num_threads = 2; | 
 |   } | 
 |   RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, | 
 |                                                        kMaxAbsoluteDifference); | 
 | #endif  // CERES_USE_OPENMP | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |