blob: 6a9b4198ec3787a430fbcc95ecef25f305381c4b [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/inner_iteration_minimizer.h"
#include <numeric>
#include <vector>
#include "ceres/evaluator.h"
#include "ceres/linear_solver.h"
#include "ceres/minimizer.h"
#include "ceres/ordering.h"
#include "ceres/parameter_block.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/schur_ordering.h"
#include "ceres/solver.h"
#include "ceres/solver_impl.h"
#include "ceres/trust_region_minimizer.h"
#include "ceres/trust_region_strategy.h"
namespace ceres {
namespace internal {
InnerIterationMinimizer::~InnerIterationMinimizer() {
}
bool InnerIterationMinimizer::Init(const Program& outer_program,
const ProblemImpl::ParameterMap& parameter_map,
const vector<double*>& parameter_blocks_for_inner_iterations,
string* error) {
program_.reset(new Program(outer_program));
Ordering ordering;
int num_inner_iteration_parameter_blocks = 0;
if (parameter_blocks_for_inner_iterations.size() == 0) {
// The user wishes for the solver to determine a set of parameter
// blocks to descend on.
//
// For now use approximate maximum independent set computed by
// ComputeSchurOrdering code. Though going forward, we want use
// the smallest maximal independent set, rather than the largest.
//
// TODO(sameeragarwal): Smallest maximal independent set instead
// of the approximate maximum independent set.
vector<ParameterBlock*> parameter_block_ordering;
num_inner_iteration_parameter_blocks =
ComputeSchurOrdering(*program_, &parameter_block_ordering);
// Decompose the Schur ordering into elimination group 0 and 1, 0
// is the one used for inner iterations.
for (int i = 0; i < parameter_block_ordering.size(); ++i) {
double* ptr = parameter_block_ordering[i]->mutable_user_state();
if (i < num_inner_iteration_parameter_blocks) {
ordering.AddParameterBlockToGroup(ptr, 0);
} else {
ordering.AddParameterBlockToGroup(ptr, 1);
}
}
} else {
const vector<ParameterBlock*> parameter_blocks = program_->parameter_blocks();
set<double*> parameter_block_ptrs(parameter_blocks_for_inner_iterations.begin(),
parameter_blocks_for_inner_iterations.end());
num_inner_iteration_parameter_blocks = 0;
// Divide the set of parameter blocks into two groups. Group 0 is
// the set of parameter blocks specified by the user, and the rest
// in group 1.
for (int i = 0; i < parameter_blocks.size(); ++i) {
double* ptr = parameter_blocks[i]->mutable_user_state();
if (parameter_block_ptrs.count(ptr) != 0) {
ordering.AddParameterBlockToGroup(ptr, 0);
} else {
ordering.AddParameterBlockToGroup(ptr, 1);
}
}
num_inner_iteration_parameter_blocks = ordering.GroupSize(0);
if (num_inner_iteration_parameter_blocks > 0) {
const map<int, set<double*> >& group_id_to_parameter_blocks =
ordering.group_id_to_parameter_blocks();
if (!SolverImpl::IsParameterBlockSetIndependent(
group_id_to_parameter_blocks.begin()->second,
program_->residual_blocks())) {
*error = "The user provided parameter_blocks_for_inner_iterations "
"does not form an independent set";
return false;
}
}
}
if (!SolverImpl::ApplyUserOrdering(parameter_map,
&ordering,
program_.get(),
error)) {
return false;
}
program_->SetParameterOffsetsAndIndex();
if (!SolverImpl::LexicographicallyOrderResidualBlocks(
num_inner_iteration_parameter_blocks,
program_.get(),
error)) {
return false;
}
ComputeResidualBlockOffsets(num_inner_iteration_parameter_blocks);
const_cast<Program*>(&outer_program)->SetParameterOffsetsAndIndex();
LinearSolver::Options linear_solver_options;
linear_solver_options.type = DENSE_QR;
linear_solver_.reset(LinearSolver::Create(linear_solver_options));
CHECK_NOTNULL(linear_solver_.get());
evaluator_options_.linear_solver_type = DENSE_QR;
evaluator_options_.num_eliminate_blocks = 0;
evaluator_options_.num_threads = 1;
return true;
}
void InnerIterationMinimizer::Minimize(
const Minimizer::Options& options,
double* parameters,
Solver::Summary* summary) {
const vector<ParameterBlock*>& parameter_blocks = program_->parameter_blocks();
const vector<ResidualBlock*>& residual_blocks = program_->residual_blocks();
const int num_inner_iteration_parameter_blocks = residual_block_offsets_.size() - 1;
for (int i = 0; i < parameter_blocks.size(); ++i) {
ParameterBlock* parameter_block = parameter_blocks[i];
parameter_block->SetState(parameters + parameter_block->state_offset());
if (i >= num_inner_iteration_parameter_blocks) {
parameter_block->SetConstant();
}
}
#pragma omp parallel for num_threads(options.num_threads)
for (int i = 0; i < num_inner_iteration_parameter_blocks; ++i) {
Solver::Summary inner_summary;
ParameterBlock* parameter_block = parameter_blocks[i];
const int old_index = parameter_block->index();
const int old_delta_offset = parameter_block->delta_offset();
parameter_block->set_index(0);
parameter_block->set_delta_offset(0);
Program inner_program;
inner_program.mutable_parameter_blocks()->push_back(parameter_block);
// This works, because we have already ordered the residual blocks
// so that the residual blocks for each parameter block being
// optimized over are contiguously located in the residual_blocks
// vector.
copy(residual_blocks.begin() + residual_block_offsets_[i],
residual_blocks.begin() + residual_block_offsets_[i + 1],
back_inserter(*inner_program.mutable_residual_blocks()));
MinimalSolve(&inner_program,
parameters + parameter_block->state_offset(),
&inner_summary);
parameter_block->set_index(old_index);
parameter_block->set_delta_offset(old_delta_offset);
}
for (int i = num_inner_iteration_parameter_blocks; i < parameter_blocks.size(); ++i) {
parameter_blocks[i]->SetVarying();
}
}
void InnerIterationMinimizer::MinimalSolve(Program* program,
double* parameters,
Solver::Summary* summary) {
*summary = Solver::Summary();
summary->initial_cost = 0.0;
summary->fixed_cost = 0.0;
summary->final_cost = 0.0;
string error;
scoped_ptr<Evaluator> evaluator(Evaluator::Create(evaluator_options_, program, &error));
CHECK_NOTNULL(evaluator.get());
scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
CHECK_NOTNULL(jacobian.get());
TrustRegionStrategy::Options trust_region_strategy_options;
trust_region_strategy_options.linear_solver = linear_solver_.get();
scoped_ptr<TrustRegionStrategy>trust_region_strategy(
TrustRegionStrategy::Create(trust_region_strategy_options));
CHECK_NOTNULL(trust_region_strategy.get());
Minimizer::Options minimizer_options;
minimizer_options.evaluator = evaluator.get();
minimizer_options.jacobian = jacobian.get();
minimizer_options.trust_region_strategy = trust_region_strategy.get();
TrustRegionMinimizer minimizer;
minimizer.Minimize(minimizer_options, parameters, summary);
}
void InnerIterationMinimizer::ComputeResidualBlockOffsets(
const int num_eliminate_blocks) {
vector<int> counts(num_eliminate_blocks, 0);
const vector<ResidualBlock*>& residual_blocks = program_->residual_blocks();
for (int i = 0; i < residual_blocks.size(); ++i) {
ResidualBlock* residual_block = residual_blocks[i];
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
if (!parameter_block->IsConstant() &&
parameter_block->index() < num_eliminate_blocks) {
counts[parameter_block->index()] += 1;
}
}
}
residual_block_offsets_.resize(num_eliminate_blocks + 1);
residual_block_offsets_[0] = 0;
partial_sum(counts.begin(), counts.end(), residual_block_offsets_.begin() + 1);
}
} // namespace internal
} // namespace ceres