| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/inner_iteration_minimizer.h" |
| |
| #include <numeric> |
| #include <vector> |
| #include "ceres/evaluator.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/minimizer.h" |
| #include "ceres/ordering.h" |
| #include "ceres/parameter_block.h" |
| #include "ceres/problem_impl.h" |
| #include "ceres/program.h" |
| #include "ceres/residual_block.h" |
| #include "ceres/schur_ordering.h" |
| #include "ceres/solver.h" |
| #include "ceres/solver_impl.h" |
| #include "ceres/trust_region_minimizer.h" |
| #include "ceres/trust_region_strategy.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| InnerIterationMinimizer::~InnerIterationMinimizer() { |
| } |
| |
| bool InnerIterationMinimizer::Init(const Program& outer_program, |
| const ProblemImpl::ParameterMap& parameter_map, |
| const vector<double*>& parameter_blocks_for_inner_iterations, |
| string* error) { |
| program_.reset(new Program(outer_program)); |
| |
| Ordering ordering; |
| int num_inner_iteration_parameter_blocks = 0; |
| |
| if (parameter_blocks_for_inner_iterations.size() == 0) { |
| // The user wishes for the solver to determine a set of parameter |
| // blocks to descend on. |
| // |
| // For now use approximate maximum independent set computed by |
| // ComputeSchurOrdering code. Though going forward, we want use |
| // the smallest maximal independent set, rather than the largest. |
| // |
| // TODO(sameeragarwal): Smallest maximal independent set instead |
| // of the approximate maximum independent set. |
| vector<ParameterBlock*> parameter_block_ordering; |
| num_inner_iteration_parameter_blocks = |
| ComputeSchurOrdering(*program_, ¶meter_block_ordering); |
| // Decompose the Schur ordering into elimination group 0 and 1, 0 |
| // is the one used for inner iterations. |
| for (int i = 0; i < parameter_block_ordering.size(); ++i) { |
| double* ptr = parameter_block_ordering[i]->mutable_user_state(); |
| if (i < num_inner_iteration_parameter_blocks) { |
| ordering.AddParameterBlockToGroup(ptr, 0); |
| } else { |
| ordering.AddParameterBlockToGroup(ptr, 1); |
| } |
| } |
| } else { |
| const vector<ParameterBlock*> parameter_blocks = program_->parameter_blocks(); |
| set<double*> parameter_block_ptrs(parameter_blocks_for_inner_iterations.begin(), |
| parameter_blocks_for_inner_iterations.end()); |
| num_inner_iteration_parameter_blocks = 0; |
| // Divide the set of parameter blocks into two groups. Group 0 is |
| // the set of parameter blocks specified by the user, and the rest |
| // in group 1. |
| for (int i = 0; i < parameter_blocks.size(); ++i) { |
| double* ptr = parameter_blocks[i]->mutable_user_state(); |
| if (parameter_block_ptrs.count(ptr) != 0) { |
| ordering.AddParameterBlockToGroup(ptr, 0); |
| } else { |
| ordering.AddParameterBlockToGroup(ptr, 1); |
| } |
| } |
| |
| num_inner_iteration_parameter_blocks = ordering.GroupSize(0); |
| if (num_inner_iteration_parameter_blocks > 0) { |
| const map<int, set<double*> >& group_id_to_parameter_blocks = |
| ordering.group_id_to_parameter_blocks(); |
| if (!SolverImpl::IsParameterBlockSetIndependent( |
| group_id_to_parameter_blocks.begin()->second, |
| program_->residual_blocks())) { |
| *error = "The user provided parameter_blocks_for_inner_iterations " |
| "does not form an independent set"; |
| return false; |
| } |
| } |
| } |
| |
| if (!SolverImpl::ApplyUserOrdering(parameter_map, |
| &ordering, |
| program_.get(), |
| error)) { |
| return false; |
| } |
| |
| program_->SetParameterOffsetsAndIndex(); |
| |
| if (!SolverImpl::LexicographicallyOrderResidualBlocks( |
| num_inner_iteration_parameter_blocks, |
| program_.get(), |
| error)) { |
| return false; |
| } |
| |
| ComputeResidualBlockOffsets(num_inner_iteration_parameter_blocks); |
| |
| const_cast<Program*>(&outer_program)->SetParameterOffsetsAndIndex(); |
| |
| LinearSolver::Options linear_solver_options; |
| linear_solver_options.type = DENSE_QR; |
| linear_solver_.reset(LinearSolver::Create(linear_solver_options)); |
| CHECK_NOTNULL(linear_solver_.get()); |
| |
| evaluator_options_.linear_solver_type = DENSE_QR; |
| evaluator_options_.num_eliminate_blocks = 0; |
| evaluator_options_.num_threads = 1; |
| |
| return true; |
| } |
| |
| void InnerIterationMinimizer::Minimize( |
| const Minimizer::Options& options, |
| double* parameters, |
| Solver::Summary* summary) { |
| const vector<ParameterBlock*>& parameter_blocks = program_->parameter_blocks(); |
| const vector<ResidualBlock*>& residual_blocks = program_->residual_blocks(); |
| |
| const int num_inner_iteration_parameter_blocks = residual_block_offsets_.size() - 1; |
| |
| for (int i = 0; i < parameter_blocks.size(); ++i) { |
| ParameterBlock* parameter_block = parameter_blocks[i]; |
| parameter_block->SetState(parameters + parameter_block->state_offset()); |
| if (i >= num_inner_iteration_parameter_blocks) { |
| parameter_block->SetConstant(); |
| } |
| } |
| |
| #pragma omp parallel for num_threads(options.num_threads) |
| for (int i = 0; i < num_inner_iteration_parameter_blocks; ++i) { |
| Solver::Summary inner_summary; |
| ParameterBlock* parameter_block = parameter_blocks[i]; |
| const int old_index = parameter_block->index(); |
| const int old_delta_offset = parameter_block->delta_offset(); |
| |
| parameter_block->set_index(0); |
| parameter_block->set_delta_offset(0); |
| |
| Program inner_program; |
| inner_program.mutable_parameter_blocks()->push_back(parameter_block); |
| |
| // This works, because we have already ordered the residual blocks |
| // so that the residual blocks for each parameter block being |
| // optimized over are contiguously located in the residual_blocks |
| // vector. |
| copy(residual_blocks.begin() + residual_block_offsets_[i], |
| residual_blocks.begin() + residual_block_offsets_[i + 1], |
| back_inserter(*inner_program.mutable_residual_blocks())); |
| |
| MinimalSolve(&inner_program, |
| parameters + parameter_block->state_offset(), |
| &inner_summary); |
| |
| parameter_block->set_index(old_index); |
| parameter_block->set_delta_offset(old_delta_offset); |
| } |
| |
| for (int i = num_inner_iteration_parameter_blocks; i < parameter_blocks.size(); ++i) { |
| parameter_blocks[i]->SetVarying(); |
| } |
| } |
| |
| void InnerIterationMinimizer::MinimalSolve(Program* program, |
| double* parameters, |
| Solver::Summary* summary) { |
| |
| *summary = Solver::Summary(); |
| summary->initial_cost = 0.0; |
| summary->fixed_cost = 0.0; |
| summary->final_cost = 0.0; |
| string error; |
| |
| scoped_ptr<Evaluator> evaluator(Evaluator::Create(evaluator_options_, program, &error)); |
| CHECK_NOTNULL(evaluator.get()); |
| |
| scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| CHECK_NOTNULL(jacobian.get()); |
| |
| TrustRegionStrategy::Options trust_region_strategy_options; |
| trust_region_strategy_options.linear_solver = linear_solver_.get(); |
| scoped_ptr<TrustRegionStrategy>trust_region_strategy( |
| TrustRegionStrategy::Create(trust_region_strategy_options)); |
| CHECK_NOTNULL(trust_region_strategy.get()); |
| |
| Minimizer::Options minimizer_options; |
| minimizer_options.evaluator = evaluator.get(); |
| minimizer_options.jacobian = jacobian.get(); |
| minimizer_options.trust_region_strategy = trust_region_strategy.get(); |
| |
| TrustRegionMinimizer minimizer; |
| minimizer.Minimize(minimizer_options, parameters, summary); |
| } |
| |
| |
| void InnerIterationMinimizer::ComputeResidualBlockOffsets( |
| const int num_eliminate_blocks) { |
| vector<int> counts(num_eliminate_blocks, 0); |
| const vector<ResidualBlock*>& residual_blocks = program_->residual_blocks(); |
| for (int i = 0; i < residual_blocks.size(); ++i) { |
| ResidualBlock* residual_block = residual_blocks[i]; |
| const int num_parameter_blocks = residual_block->NumParameterBlocks(); |
| for (int j = 0; j < num_parameter_blocks; ++j) { |
| ParameterBlock* parameter_block = residual_block->parameter_blocks()[j]; |
| if (!parameter_block->IsConstant() && |
| parameter_block->index() < num_eliminate_blocks) { |
| counts[parameter_block->index()] += 1; |
| } |
| } |
| } |
| |
| residual_block_offsets_.resize(num_eliminate_blocks + 1); |
| residual_block_offsets_[0] = 0; |
| partial_sum(counts.begin(), counts.end(), residual_block_offsets_.begin() + 1); |
| } |
| |
| |
| } // namespace internal |
| } // namespace ceres |