|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2019 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_PUBLIC_AUTODIFF_FIRST_ORDER_FUNCTION_H_ | 
|  | #define CERES_PUBLIC_AUTODIFF_FIRST_ORDER_FUNCTION_H_ | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/first_order_function.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/fixed_array.h" | 
|  | #include "ceres/jet.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // Create FirstOrderFunctions as needed by the GradientProblem | 
|  | // framework, with gradients computed via automatic | 
|  | // differentiation. For more information on automatic differentiation, | 
|  | // see the wikipedia article at | 
|  | // http://en.wikipedia.org/wiki/Automatic_differentiation | 
|  | // | 
|  | // To get an auto differentiated function, you must define a class | 
|  | // with a templated operator() (a functor) that computes the cost | 
|  | // function in terms of the template parameter T. The autodiff | 
|  | // framework substitutes appropriate "jet" objects for T in order to | 
|  | // compute the derivative when necessary, but this is hidden, and you | 
|  | // should write the function as if T were a scalar type (e.g. a | 
|  | // double-precision floating point number). | 
|  | // | 
|  | // The function must write the computed value in the last argument | 
|  | // (the only non-const one) and return true to indicate | 
|  | // success. | 
|  | // | 
|  | // For example, consider a scalar error e = x'y - a, where both x and y are | 
|  | // two-dimensional column vector parameters, the prime sign indicates | 
|  | // transposition, and a is a constant. | 
|  | // | 
|  | // To write an auto-differentiable FirstOrderFunction for the above model, first | 
|  | // define the object | 
|  | // | 
|  | //  class QuadraticCostFunctor { | 
|  | //   public: | 
|  | //    explicit QuadraticCostFunctor(double a) : a_(a) {} | 
|  | //    template <typename T> | 
|  | //    bool operator()(const T* const xy, T* cost) const { | 
|  | //      const T* const x = xy; | 
|  | //      const T* const y = xy + 2; | 
|  | //      *cost = x[0] * y[0] + x[1] * y[1] - T(a_); | 
|  | //      return true; | 
|  | //    } | 
|  | // | 
|  | //   private: | 
|  | //    double a_; | 
|  | //  }; | 
|  | // | 
|  | // Note that in the declaration of operator() the input parameters xy come | 
|  | // first, and are passed as const pointers to arrays of T. The | 
|  | // output is the last parameter. | 
|  | // | 
|  | // Then given this class definition, the auto differentiated FirstOrderFunction | 
|  | // for it can be constructed as follows. | 
|  | // | 
|  | //    FirstOrderFunction* function = | 
|  | //      new AutoDiffFirstOrderFunction<QuadraticCostFunctor, 4>( | 
|  | //          new QuadraticCostFunctor(1.0))); | 
|  | // | 
|  | // In the instantiation above, the template parameters following | 
|  | // "QuadraticCostFunctor", "4", describe the functor as computing a | 
|  | // 1-dimensional output from a four dimensional vector. | 
|  | // | 
|  | // WARNING: Since the functor will get instantiated with different types for | 
|  | // T, you must convert from other numeric types to T before mixing | 
|  | // computations with other variables of type T. In the example above, this is | 
|  | // seen where instead of using a_ directly, a_ is wrapped with T(a_). | 
|  |  | 
|  | template <typename FirstOrderFunctor, int kNumParameters> | 
|  | class AutoDiffFirstOrderFunction final : public FirstOrderFunction { | 
|  | public: | 
|  | // Takes ownership of functor. | 
|  | explicit AutoDiffFirstOrderFunction(FirstOrderFunctor* functor) | 
|  | : functor_(functor) { | 
|  | static_assert(kNumParameters > 0, "kNumParameters must be positive"); | 
|  | } | 
|  |  | 
|  | bool Evaluate(const double* const parameters, | 
|  | double* cost, | 
|  | double* gradient) const override { | 
|  | if (gradient == nullptr) { | 
|  | return (*functor_)(parameters, cost); | 
|  | } | 
|  |  | 
|  | using JetT = Jet<double, kNumParameters>; | 
|  | internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(kNumParameters); | 
|  | for (int i = 0; i < kNumParameters; ++i) { | 
|  | x[i].a = parameters[i]; | 
|  | x[i].v.setZero(); | 
|  | x[i].v[i] = 1.0; | 
|  | } | 
|  |  | 
|  | JetT output; | 
|  | output.a = kImpossibleValue; | 
|  | output.v.setConstant(kImpossibleValue); | 
|  |  | 
|  | if (!(*functor_)(x.data(), &output)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *cost = output.a; | 
|  | VectorRef(gradient, kNumParameters) = output.v; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int NumParameters() const override { return kNumParameters; } | 
|  |  | 
|  | const FirstOrderFunctor& functor() const { return *functor_; } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<FirstOrderFunctor> functor_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_AUTODIFF_FIRST_ORDER_FUNCTION_H_ |