|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  |  | 
|  | #include "ceres/block_jacobi_preconditioner.h" | 
|  |  | 
|  | #include "Eigen/Cholesky" | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/integral_types.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | BlockJacobiPreconditioner::BlockJacobiPreconditioner( | 
|  | const BlockSparseMatrix& A) | 
|  | : num_rows_(A.num_rows()), | 
|  | block_structure_(*A.block_structure()) { | 
|  | // Calculate the amount of storage needed. | 
|  | int storage_needed = 0; | 
|  | for (int c = 0; c < block_structure_.cols.size(); ++c) { | 
|  | int size = block_structure_.cols[c].size; | 
|  | storage_needed += size * size; | 
|  | } | 
|  |  | 
|  | // Size the offsets and storage. | 
|  | blocks_.resize(block_structure_.cols.size()); | 
|  | block_storage_.resize(storage_needed); | 
|  |  | 
|  | // Put pointers to the storage in the offsets. | 
|  | double* block_cursor = &block_storage_[0]; | 
|  | for (int c = 0; c < block_structure_.cols.size(); ++c) { | 
|  | int size = block_structure_.cols[c].size; | 
|  | blocks_[c] = block_cursor; | 
|  | block_cursor += size * size; | 
|  | } | 
|  | } | 
|  |  | 
|  | BlockJacobiPreconditioner::~BlockJacobiPreconditioner() {} | 
|  |  | 
|  | bool BlockJacobiPreconditioner::UpdateImpl(const BlockSparseMatrix& A, | 
|  | const double* D) { | 
|  | const CompressedRowBlockStructure* bs = A.block_structure(); | 
|  |  | 
|  | // Compute the diagonal blocks by block inner products. | 
|  | std::fill(block_storage_.begin(), block_storage_.end(), 0.0); | 
|  | const double* values = A.values(); | 
|  | for (int r = 0; r < bs->rows.size(); ++r) { | 
|  | const int row_block_size = bs->rows[r].block.size; | 
|  | const vector<Cell>& cells = bs->rows[r].cells; | 
|  | for (int c = 0; c < cells.size(); ++c) { | 
|  | const int col_block_size = bs->cols[cells[c].block_id].size; | 
|  | ConstMatrixRef m(values + cells[c].position, | 
|  | row_block_size, | 
|  | col_block_size); | 
|  |  | 
|  | MatrixRef(blocks_[cells[c].block_id], | 
|  | col_block_size, | 
|  | col_block_size).noalias() += m.transpose() * m; | 
|  |  | 
|  | // TODO(keir): Figure out when the below expression is actually faster | 
|  | // than doing the full rank update. The issue is that for smaller sizes, | 
|  | // the rankUpdate() function is slower than the full product done above. | 
|  | // | 
|  | // On the typical bundling problems, the above product is ~5% faster. | 
|  | // | 
|  | //   MatrixRef(blocks_[cells[c].block_id], | 
|  | //             col_block_size, | 
|  | //             col_block_size) | 
|  | //      .selfadjointView<Eigen::Upper>() | 
|  | //      .rankUpdate(m); | 
|  | // | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the diagonal and invert each block. | 
|  | for (int c = 0; c < bs->cols.size(); ++c) { | 
|  | const int size = block_structure_.cols[c].size; | 
|  | const int position = block_structure_.cols[c].position; | 
|  | MatrixRef block(blocks_[c], size, size); | 
|  |  | 
|  | if (D != NULL) { | 
|  | block.diagonal() += | 
|  | ConstVectorRef(D + position, size).array().square().matrix(); | 
|  | } | 
|  |  | 
|  | block = block.selfadjointView<Eigen::Upper>() | 
|  | .llt() | 
|  | .solve(Matrix::Identity(size, size)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void BlockJacobiPreconditioner::RightMultiply(const double* x, | 
|  | double* y) const { | 
|  | for (int c = 0; c < block_structure_.cols.size(); ++c) { | 
|  | const int size = block_structure_.cols[c].size; | 
|  | const int position = block_structure_.cols[c].position; | 
|  | ConstMatrixRef D(blocks_[c], size, size); | 
|  | ConstVectorRef x_block(x + position, size); | 
|  | VectorRef y_block(y + position, size); | 
|  | y_block += D * x_block; | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockJacobiPreconditioner::LeftMultiply(const double* x, double* y) const { | 
|  | RightMultiply(x, y); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |