|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2013 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/incomplete_lq_factorization.h" | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | void ExpectMatricesAreEqual(const CompressedRowSparseMatrix& expected, | 
|  | const CompressedRowSparseMatrix& actual, | 
|  | const double tolerance) { | 
|  | EXPECT_EQ(expected.num_rows(), actual.num_rows()); | 
|  | EXPECT_EQ(expected.num_cols(), actual.num_cols()); | 
|  | for (int i = 0; i < expected.num_rows(); ++i) { | 
|  | EXPECT_EQ(expected.rows()[i], actual.rows()[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < actual.num_nonzeros(); ++i) { | 
|  | EXPECT_EQ(expected.cols()[i], actual.cols()[i]); | 
|  | EXPECT_NEAR(expected.values()[i], actual.values()[i], tolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(IncompleteQRFactorization, OneByOneMatrix) { | 
|  | CompressedRowSparseMatrix matrix(1, 1, 1); | 
|  | matrix.mutable_rows()[0] = 0; | 
|  | matrix.mutable_rows()[1] = 1; | 
|  | matrix.mutable_cols()[0] = 0; | 
|  | matrix.mutable_values()[0] = 2; | 
|  |  | 
|  | scoped_ptr<CompressedRowSparseMatrix> l( | 
|  | IncompleteLQFactorization(matrix, 1, 0.0, 1, 0.0)); | 
|  | ExpectMatricesAreEqual(matrix, *l, 1e-16); | 
|  | } | 
|  |  | 
|  | TEST(IncompleteLQFactorization, CompleteFactorization) { | 
|  | double dense_matrix[] = { | 
|  | 0.00000,  0.00000,  0.20522,  0.00000,  0.49077,  0.92835,  0.00000,  0.83825,  0.00000,  0.00000,  // NOLINT | 
|  | 0.00000,  0.00000,  0.00000,  0.62491,  0.38144,  0.00000,  0.79394,  0.79178,  0.00000,  0.44382,  // NOLINT | 
|  | 0.00000,  0.00000,  0.00000,  0.61517,  0.55941,  0.00000,  0.00000,  0.00000,  0.00000,  0.60664,  // NOLINT | 
|  | 0.00000,  0.00000,  0.00000,  0.00000,  0.45031,  0.00000,  0.64132,  0.00000,  0.38832,  0.00000,  // NOLINT | 
|  | 0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.57121,  0.00000,  0.01375,  0.70640,  0.00000,  // NOLINT | 
|  | 0.00000,  0.00000,  0.07451,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  // NOLINT | 
|  | 0.68095,  0.00000,  0.00000,  0.95473,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  // NOLINT | 
|  | 0.00000,  0.00000,  0.00000,  0.00000,  0.59374,  0.00000,  0.00000,  0.00000,  0.49139,  0.00000,  // NOLINT | 
|  | 0.91276,  0.96641,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.91797,  // NOLINT | 
|  | 0.96828,  0.00000,  0.00000,  0.72583,  0.00000,  0.00000,  0.81459,  0.00000,  0.04560,  0.00000   // NOLINT | 
|  | }; | 
|  |  | 
|  | CompressedRowSparseMatrix matrix(10, 10, 100); | 
|  | int* rows = matrix.mutable_rows(); | 
|  | int* cols = matrix.mutable_cols(); | 
|  | double* values = matrix.mutable_values(); | 
|  |  | 
|  | int idx = 0; | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | rows[i] = idx; | 
|  | for (int j = 0; j < 10; ++j) { | 
|  | const double v = dense_matrix[i * 10 + j]; | 
|  | if (fabs(v) > 1e-6) { | 
|  | cols[idx] = j; | 
|  | values[idx] = v; | 
|  | ++idx; | 
|  | } | 
|  | } | 
|  | } | 
|  | rows[10] = idx; | 
|  |  | 
|  | scoped_ptr<CompressedRowSparseMatrix> lmatrix( | 
|  | IncompleteLQFactorization(matrix, 10, 0.0, 10, 0.0)); | 
|  |  | 
|  | ConstMatrixRef mref(dense_matrix, 10, 10); | 
|  |  | 
|  | // Use Cholesky factorization to compute the L matrix. | 
|  | Matrix expected_l_matrix  = (mref * mref.transpose()).llt().matrixL(); | 
|  | Matrix actual_l_matrix; | 
|  | lmatrix->ToDenseMatrix(&actual_l_matrix); | 
|  |  | 
|  | EXPECT_NEAR((expected_l_matrix * expected_l_matrix.transpose() - | 
|  | actual_l_matrix * actual_l_matrix.transpose()).norm(), | 
|  | 0.0, | 
|  | 1e-10) | 
|  | << "expected: \n" << expected_l_matrix | 
|  | << "\actual: \n" << actual_l_matrix; | 
|  | } | 
|  |  | 
|  | TEST(IncompleteLQFactorization, DropEntriesAndAddRow) { | 
|  | // Allocate space and then make it a zero sized matrix. | 
|  | CompressedRowSparseMatrix matrix(10, 10, 100); | 
|  | matrix.set_num_rows(0); | 
|  |  | 
|  | vector<pair<int, double> > scratch(10); | 
|  |  | 
|  | Vector dense_vector(10); | 
|  | dense_vector(0) = 5; | 
|  | dense_vector(1) = 1; | 
|  | dense_vector(2) = 2; | 
|  | dense_vector(3) = 3; | 
|  | dense_vector(4) = 1; | 
|  | dense_vector(5) = 4; | 
|  |  | 
|  | // Add a row with just one entry. | 
|  | DropEntriesAndAddRow(dense_vector, 1, 1, 0, &scratch, &matrix); | 
|  | EXPECT_EQ(matrix.num_rows(), 1); | 
|  | EXPECT_EQ(matrix.num_cols(), 10); | 
|  | EXPECT_EQ(matrix.num_nonzeros(), 1); | 
|  | EXPECT_EQ(matrix.values()[0], 5.0); | 
|  | EXPECT_EQ(matrix.cols()[0], 0); | 
|  |  | 
|  | // Add a row with six entries | 
|  | DropEntriesAndAddRow(dense_vector, 6, 10, 0, &scratch, &matrix); | 
|  | EXPECT_EQ(matrix.num_rows(), 2); | 
|  | EXPECT_EQ(matrix.num_cols(), 10); | 
|  | EXPECT_EQ(matrix.num_nonzeros(), 7); | 
|  | for (int idx = matrix.rows()[1]; idx < matrix.rows()[2]; ++idx) { | 
|  | EXPECT_EQ(matrix.cols()[idx], idx - matrix.rows()[1]); | 
|  | EXPECT_EQ(matrix.values()[idx], dense_vector(idx - matrix.rows()[1])); | 
|  | } | 
|  |  | 
|  | // Add the top 3 entries. | 
|  | DropEntriesAndAddRow(dense_vector, 6, 3, 0, &scratch, &matrix); | 
|  | EXPECT_EQ(matrix.num_rows(), 3); | 
|  | EXPECT_EQ(matrix.num_cols(), 10); | 
|  | EXPECT_EQ(matrix.num_nonzeros(), 10); | 
|  |  | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[2]], 0); | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 1], 3); | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 2], 5); | 
|  |  | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[2]], 5); | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[2] + 1], 3); | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[2] + 2], 4); | 
|  |  | 
|  | // Only keep entries greater than 1.0; | 
|  | DropEntriesAndAddRow(dense_vector, 6, 6, 0.2, &scratch, &matrix); | 
|  | EXPECT_EQ(matrix.num_rows(), 4); | 
|  | EXPECT_EQ(matrix.num_cols(), 10); | 
|  | EXPECT_EQ(matrix.num_nonzeros(), 14); | 
|  |  | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[3]], 0); | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 1], 2); | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 2], 3); | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 3], 5); | 
|  |  | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[3]], 5); | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[3] + 1], 2); | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[3] + 2], 3); | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[3] + 3], 4); | 
|  |  | 
|  | // Only keep the top 2 entries greater than 1.0 | 
|  | DropEntriesAndAddRow(dense_vector, 6, 2, 0.2, &scratch, &matrix); | 
|  | EXPECT_EQ(matrix.num_rows(), 5); | 
|  | EXPECT_EQ(matrix.num_cols(), 10); | 
|  | EXPECT_EQ(matrix.num_nonzeros(), 16); | 
|  |  | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[4]], 0); | 
|  | EXPECT_EQ(matrix.cols()[matrix.rows()[4] + 1], 5); | 
|  |  | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[4]], 5); | 
|  | EXPECT_EQ(matrix.values()[matrix.rows()[4] + 1], 4); | 
|  | } | 
|  |  | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |