| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/casts.h" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class UnsymmetricLinearSolverTest : public ::testing::Test { | 
 |  protected : | 
 |   virtual void SetUp() { | 
 |     scoped_ptr<LinearLeastSquaresProblem> problem( | 
 |         CreateLinearLeastSquaresProblemFromId(0)); | 
 |  | 
 |     CHECK_NOTNULL(problem.get()); | 
 |     A_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
 |     b_.reset(problem->b.release()); | 
 |     D_.reset(problem->D.release()); | 
 |     sol_unregularized_.reset(problem->x.release()); | 
 |     sol_regularized_.reset(problem->x_D.release()); | 
 |   } | 
 |  | 
 |   void TestSolver(const LinearSolver::Options& options) { | 
 |  | 
 |  | 
 |     LinearSolver::PerSolveOptions per_solve_options; | 
 |     LinearSolver::Summary unregularized_solve_summary; | 
 |     LinearSolver::Summary regularized_solve_summary; | 
 |     Vector x_unregularized(A_->num_cols()); | 
 |     Vector x_regularized(A_->num_cols()); | 
 |  | 
 |     scoped_ptr<SparseMatrix> transformed_A; | 
 |  | 
 |     if (options.type == DENSE_QR || | 
 |         options.type == DENSE_NORMAL_CHOLESKY) { | 
 |       transformed_A.reset(new DenseSparseMatrix(*A_)); | 
 |     } else if (options.type == SPARSE_NORMAL_CHOLESKY) { | 
 |       CompressedRowSparseMatrix* crsm =  new CompressedRowSparseMatrix(*A_); | 
 |       // Add row/column blocks structure. | 
 |       for (int i = 0; i < A_->num_rows(); ++i) { | 
 |         crsm->mutable_row_blocks()->push_back(1); | 
 |       } | 
 |  | 
 |       for (int i = 0; i < A_->num_cols(); ++i) { | 
 |         crsm->mutable_col_blocks()->push_back(1); | 
 |       } | 
 |       transformed_A.reset(crsm); | 
 |     } else { | 
 |       LOG(FATAL) << "Unknown linear solver : " << options.type; | 
 |     } | 
 |  | 
 |     // Unregularized | 
 |     scoped_ptr<LinearSolver> solver(LinearSolver::Create(options)); | 
 |     unregularized_solve_summary = | 
 |         solver->Solve(transformed_A.get(), | 
 |                       b_.get(), | 
 |                       per_solve_options, | 
 |                       x_unregularized.data()); | 
 |  | 
 |     // Sparsity structure is changing, reset the solver. | 
 |     solver.reset(LinearSolver::Create(options)); | 
 |     // Regularized solution | 
 |     per_solve_options.D = D_.get(); | 
 |     regularized_solve_summary = | 
 |         solver->Solve(transformed_A.get(), | 
 |                       b_.get(), | 
 |                       per_solve_options, | 
 |                       x_regularized.data()); | 
 |  | 
 |     EXPECT_EQ(unregularized_solve_summary.termination_type, | 
 |               LINEAR_SOLVER_SUCCESS); | 
 |  | 
 |     for (int i = 0; i < A_->num_cols(); ++i) { | 
 |       EXPECT_NEAR(sol_unregularized_[i], x_unregularized[i], 1e-8); | 
 |     } | 
 |  | 
 |     EXPECT_EQ(regularized_solve_summary.termination_type, | 
 |               LINEAR_SOLVER_SUCCESS); | 
 |     for (int i = 0; i < A_->num_cols(); ++i) { | 
 |       EXPECT_NEAR(sol_regularized_[i], x_regularized[i], 1e-8); | 
 |     } | 
 |   } | 
 |  | 
 |   scoped_ptr<TripletSparseMatrix> A_; | 
 |   scoped_array<double> b_; | 
 |   scoped_array<double> D_; | 
 |   scoped_array<double> sol_unregularized_; | 
 |   scoped_array<double> sol_regularized_; | 
 | }; | 
 |  | 
 | TEST_F(UnsymmetricLinearSolverTest, EigenDenseQR) { | 
 |   LinearSolver::Options options; | 
 |   options.type = DENSE_QR; | 
 |   options.dense_linear_algebra_library_type = EIGEN; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(UnsymmetricLinearSolverTest, EigenDenseNormalCholesky) { | 
 |   LinearSolver::Options options; | 
 |   options.dense_linear_algebra_library_type = EIGEN; | 
 |   options.type = DENSE_NORMAL_CHOLESKY; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | #ifndef CERES_NO_LAPACK | 
 | TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseQR) { | 
 |   LinearSolver::Options options; | 
 |   options.type = DENSE_QR; | 
 |   options.dense_linear_algebra_library_type = LAPACK; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseNormalCholesky) { | 
 |   LinearSolver::Options options; | 
 |   options.dense_linear_algebra_library_type = LAPACK; | 
 |   options.type = DENSE_NORMAL_CHOLESKY; | 
 |   TestSolver(options); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 | TEST_F(UnsymmetricLinearSolverTest, | 
 |        SparseNormalCholeskyUsingSuiteSparsePreOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = false; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(UnsymmetricLinearSolverTest, | 
 |        SparseNormalCholeskyUsingSuiteSparsePostOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = true; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(UnsymmetricLinearSolverTest, | 
 |        SparseNormalCholeskyUsingSuiteSparseDynamicSparsity) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.dynamic_sparsity = true; | 
 |   TestSolver(options); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef CERES_NO_CXSPARSE | 
 | TEST_F(UnsymmetricLinearSolverTest, | 
 |        SparseNormalCholeskyUsingCXSparsePreOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = CX_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = false; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(UnsymmetricLinearSolverTest, | 
 |        SparseNormalCholeskyUsingCXSparsePostOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = CX_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = true; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(UnsymmetricLinearSolverTest, | 
 |        SparseNormalCholeskyUsingCXSparseDynamicSparsity) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = CX_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.dynamic_sparsity = true; | 
 |   TestSolver(options); | 
 | } | 
 | #endif | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |