|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: kushalav@google.com (Avanish Kushal) | 
|  |  | 
|  | // This include must come before any #ifndef check on Ceres compile options. | 
|  | #include "ceres/internal/port.h" | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  |  | 
|  | #include "ceres/visibility.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <ctime> | 
|  | #include <algorithm> | 
|  | #include <set> | 
|  | #include <vector> | 
|  | #include <utility> | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/collections_port.h" | 
|  | #include "ceres/graph.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | void ComputeVisibility(const CompressedRowBlockStructure& block_structure, | 
|  | const int num_eliminate_blocks, | 
|  | vector< set<int> >* visibility) { | 
|  | CHECK_NOTNULL(visibility); | 
|  |  | 
|  | // Clear the visibility vector and resize it to hold a | 
|  | // vector for each camera. | 
|  | visibility->resize(0); | 
|  | visibility->resize(block_structure.cols.size() - num_eliminate_blocks); | 
|  |  | 
|  | for (int i = 0; i < block_structure.rows.size(); ++i) { | 
|  | const vector<Cell>& cells = block_structure.rows[i].cells; | 
|  | int block_id = cells[0].block_id; | 
|  | // If the first block is not an e_block, then skip this row block. | 
|  | if (block_id >= num_eliminate_blocks) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (int j = 1; j < cells.size(); ++j) { | 
|  | int camera_block_id = cells[j].block_id - num_eliminate_blocks; | 
|  | DCHECK_GE(camera_block_id, 0); | 
|  | DCHECK_LT(camera_block_id, visibility->size()); | 
|  | (*visibility)[camera_block_id].insert(block_id); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Graph<int>* CreateSchurComplementGraph(const vector<set<int> >& visibility) { | 
|  | const time_t start_time = time(NULL); | 
|  | // Compute the number of e_blocks/point blocks. Since the visibility | 
|  | // set for each e_block/camera contains the set of e_blocks/points | 
|  | // visible to it, we find the maximum across all visibility sets. | 
|  | int num_points = 0; | 
|  | for (int i = 0; i < visibility.size(); i++) { | 
|  | if (visibility[i].size() > 0) { | 
|  | num_points = max(num_points, (*visibility[i].rbegin()) + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Invert the visibility. The input is a camera->point mapping, | 
|  | // which tells us which points are visible in which | 
|  | // cameras. However, to compute the sparsity structure of the Schur | 
|  | // Complement efficiently, its better to have the point->camera | 
|  | // mapping. | 
|  | vector<set<int> > inverse_visibility(num_points); | 
|  | for (int i = 0; i < visibility.size(); i++) { | 
|  | const set<int>& visibility_set = visibility[i]; | 
|  | for (set<int>::const_iterator it = visibility_set.begin(); | 
|  | it != visibility_set.end(); | 
|  | ++it) { | 
|  | inverse_visibility[*it].insert(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Map from camera pairs to number of points visible to both cameras | 
|  | // in the pair. | 
|  | HashMap<pair<int, int>, int > camera_pairs; | 
|  |  | 
|  | // Count the number of points visible to each camera/f_block pair. | 
|  | for (vector<set<int> >::const_iterator it = inverse_visibility.begin(); | 
|  | it != inverse_visibility.end(); | 
|  | ++it) { | 
|  | const set<int>& inverse_visibility_set = *it; | 
|  | for (set<int>::const_iterator camera1 = inverse_visibility_set.begin(); | 
|  | camera1 != inverse_visibility_set.end(); | 
|  | ++camera1) { | 
|  | set<int>::const_iterator camera2 = camera1; | 
|  | for (++camera2; camera2 != inverse_visibility_set.end(); ++camera2) { | 
|  | ++(camera_pairs[make_pair(*camera1, *camera2)]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Graph<int>* graph = new Graph<int>(); | 
|  |  | 
|  | // Add vertices and initialize the pairs for self edges so that self | 
|  | // edges are guaranteed. This is needed for the Canonical views | 
|  | // algorithm to work correctly. | 
|  | static const double kSelfEdgeWeight = 1.0; | 
|  | for (int i = 0; i < visibility.size(); ++i) { | 
|  | graph->AddVertex(i); | 
|  | graph->AddEdge(i, i, kSelfEdgeWeight); | 
|  | } | 
|  |  | 
|  | // Add an edge for each camera pair. | 
|  | for (HashMap<pair<int, int>, int>::const_iterator it = camera_pairs.begin(); | 
|  | it != camera_pairs.end(); | 
|  | ++it) { | 
|  | const int camera1 = it->first.first; | 
|  | const int camera2 = it->first.second; | 
|  | CHECK_NE(camera1, camera2); | 
|  |  | 
|  | const int count = it->second; | 
|  | // Static cast necessary for Windows. | 
|  | const double weight = static_cast<double>(count) / | 
|  | (sqrt(static_cast<double>( | 
|  | visibility[camera1].size() * visibility[camera2].size()))); | 
|  | graph->AddEdge(camera1, camera2, weight); | 
|  | } | 
|  |  | 
|  | VLOG(2) << "Schur complement graph time: " << (time(NULL) - start_time); | 
|  | return graph; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_NO_SUITESPARSE |