| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: fixed_array.h |
| // ----------------------------------------------------------------------------- |
| // |
| // A `FixedArray<T>` represents a non-resizable array of `T` where the length of |
| // the array can be determined at run-time. It is a good replacement for |
| // non-standard and deprecated uses of `alloca()` and variable length arrays |
| // within the GCC extension. (See |
| // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). |
| // |
| // `FixedArray` allocates small arrays inline, keeping performance fast by |
| // avoiding heap operations. It also helps reduce the chances of |
| // accidentally overflowing your stack if large input is passed to |
| // your function. |
| |
| #ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |
| #define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |
| |
| #include <Eigen/Core> // For Eigen::aligned_allocator |
| #include <algorithm> |
| #include <array> |
| #include <cstddef> |
| #include <memory> |
| #include <tuple> |
| #include <type_traits> |
| |
| #include "ceres/internal/memory.h" |
| #include "glog/logging.h" |
| |
| namespace ceres::internal { |
| |
| constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); |
| |
| // The default fixed array allocator. |
| // |
| // As one can not easily detect if a struct contains or inherits from a fixed |
| // size Eigen type, to be safe the Eigen::aligned_allocator is used by default. |
| // But trivial types can never contain Eigen types, so std::allocator is used to |
| // safe some heap memory. |
| template <typename T> |
| using FixedArrayDefaultAllocator = |
| typename std::conditional<std::is_trivial<T>::value, |
| std::allocator<T>, |
| Eigen::aligned_allocator<T>>::type; |
| |
| // ----------------------------------------------------------------------------- |
| // FixedArray |
| // ----------------------------------------------------------------------------- |
| // |
| // A `FixedArray` provides a run-time fixed-size array, allocating a small array |
| // inline for efficiency. |
| // |
| // Most users should not specify an `inline_elements` argument and let |
| // `FixedArray` automatically determine the number of elements |
| // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the |
| // `FixedArray` implementation will use inline storage for arrays with a |
| // length <= `inline_elements`. |
| // |
| // Note that a `FixedArray` constructed with a `size_type` argument will |
| // default-initialize its values by leaving trivially constructible types |
| // uninitialized (e.g. int, int[4], double), and others default-constructed. |
| // This matches the behavior of c-style arrays and `std::array`, but not |
| // `std::vector`. |
| // |
| // Note that `FixedArray` does not provide a public allocator; if it requires a |
| // heap allocation, it will do so with global `::operator new[]()` and |
| // `::operator delete[]()`, even if T provides class-scope overrides for these |
| // operators. |
| template <typename T, |
| size_t N = kFixedArrayUseDefault, |
| typename A = FixedArrayDefaultAllocator<T>> |
| class FixedArray { |
| static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, |
| "Arrays with unknown bounds cannot be used with FixedArray."); |
| |
| static constexpr size_t kInlineBytesDefault = 256; |
| |
| using AllocatorTraits = std::allocator_traits<A>; |
| // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, |
| // but this seems to be mostly pedantic. |
| template <typename Iterator> |
| using EnableIfForwardIterator = typename std::enable_if<std::is_convertible< |
| typename std::iterator_traits<Iterator>::iterator_category, |
| std::forward_iterator_tag>::value>::type; |
| static constexpr bool DefaultConstructorIsNonTrivial() { |
| return !std::is_trivially_default_constructible<StorageElement>::value; |
| } |
| |
| public: |
| using allocator_type = typename AllocatorTraits::allocator_type; |
| using value_type = typename AllocatorTraits::value_type; |
| using pointer = typename AllocatorTraits::pointer; |
| using const_pointer = typename AllocatorTraits::const_pointer; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using size_type = typename AllocatorTraits::size_type; |
| using difference_type = typename AllocatorTraits::difference_type; |
| using iterator = pointer; |
| using const_iterator = const_pointer; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| |
| static constexpr size_type inline_elements = |
| (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) |
| : static_cast<size_type>(N)); |
| |
| FixedArray(const FixedArray& other, |
| const allocator_type& a = allocator_type()) |
| : FixedArray(other.begin(), other.end(), a) {} |
| |
| FixedArray(FixedArray&& other, const allocator_type& a = allocator_type()) |
| : FixedArray(std::make_move_iterator(other.begin()), |
| std::make_move_iterator(other.end()), |
| a) {} |
| |
| // Creates an array object that can store `n` elements. |
| // Note that trivially constructible elements will be uninitialized. |
| explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) |
| : storage_(n, a) { |
| if (DefaultConstructorIsNonTrivial()) { |
| ConstructRange(storage_.alloc(), storage_.begin(), storage_.end()); |
| } |
| } |
| |
| // Creates an array initialized with `n` copies of `val`. |
| FixedArray(size_type n, |
| const value_type& val, |
| const allocator_type& a = allocator_type()) |
| : storage_(n, a) { |
| ConstructRange(storage_.alloc(), storage_.begin(), storage_.end(), val); |
| } |
| |
| // Creates an array initialized with the size and contents of `init_list`. |
| FixedArray(std::initializer_list<value_type> init_list, |
| const allocator_type& a = allocator_type()) |
| : FixedArray(init_list.begin(), init_list.end(), a) {} |
| |
| // Creates an array initialized with the elements from the input |
| // range. The array's size will always be `std::distance(first, last)`. |
| // REQUIRES: Iterator must be a forward_iterator or better. |
| template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> |
| FixedArray(Iterator first, |
| Iterator last, |
| const allocator_type& a = allocator_type()) |
| : storage_(std::distance(first, last), a) { |
| CopyRange(storage_.alloc(), storage_.begin(), first, last); |
| } |
| |
| ~FixedArray() noexcept { |
| for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { |
| AllocatorTraits::destroy(storage_.alloc(), cur); |
| } |
| } |
| |
| // Assignments are deleted because they break the invariant that the size of a |
| // `FixedArray` never changes. |
| void operator=(FixedArray&&) = delete; |
| void operator=(const FixedArray&) = delete; |
| |
| // FixedArray::size() |
| // |
| // Returns the length of the fixed array. |
| size_type size() const { return storage_.size(); } |
| |
| // FixedArray::max_size() |
| // |
| // Returns the largest possible value of `std::distance(begin(), end())` for a |
| // `FixedArray<T>`. This is equivalent to the most possible addressable bytes |
| // over the number of bytes taken by T. |
| constexpr size_type max_size() const { |
| return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); |
| } |
| |
| // FixedArray::empty() |
| // |
| // Returns whether or not the fixed array is empty. |
| bool empty() const { return size() == 0; } |
| |
| // FixedArray::memsize() |
| // |
| // Returns the memory size of the fixed array in bytes. |
| size_t memsize() const { return size() * sizeof(value_type); } |
| |
| // FixedArray::data() |
| // |
| // Returns a const T* pointer to elements of the `FixedArray`. This pointer |
| // can be used to access (but not modify) the contained elements. |
| const_pointer data() const { return AsValueType(storage_.begin()); } |
| |
| // Overload of FixedArray::data() to return a T* pointer to elements of the |
| // fixed array. This pointer can be used to access and modify the contained |
| // elements. |
| pointer data() { return AsValueType(storage_.begin()); } |
| |
| // FixedArray::operator[] |
| // |
| // Returns a reference the ith element of the fixed array. |
| // REQUIRES: 0 <= i < size() |
| reference operator[](size_type i) { |
| DCHECK_LT(i, size()); |
| return data()[i]; |
| } |
| |
| // Overload of FixedArray::operator()[] to return a const reference to the |
| // ith element of the fixed array. |
| // REQUIRES: 0 <= i < size() |
| const_reference operator[](size_type i) const { |
| DCHECK_LT(i, size()); |
| return data()[i]; |
| } |
| |
| // FixedArray::front() |
| // |
| // Returns a reference to the first element of the fixed array. |
| reference front() { return *begin(); } |
| |
| // Overload of FixedArray::front() to return a reference to the first element |
| // of a fixed array of const values. |
| const_reference front() const { return *begin(); } |
| |
| // FixedArray::back() |
| // |
| // Returns a reference to the last element of the fixed array. |
| reference back() { return *(end() - 1); } |
| |
| // Overload of FixedArray::back() to return a reference to the last element |
| // of a fixed array of const values. |
| const_reference back() const { return *(end() - 1); } |
| |
| // FixedArray::begin() |
| // |
| // Returns an iterator to the beginning of the fixed array. |
| iterator begin() { return data(); } |
| |
| // Overload of FixedArray::begin() to return a const iterator to the |
| // beginning of the fixed array. |
| const_iterator begin() const { return data(); } |
| |
| // FixedArray::cbegin() |
| // |
| // Returns a const iterator to the beginning of the fixed array. |
| const_iterator cbegin() const { return begin(); } |
| |
| // FixedArray::end() |
| // |
| // Returns an iterator to the end of the fixed array. |
| iterator end() { return data() + size(); } |
| |
| // Overload of FixedArray::end() to return a const iterator to the end of the |
| // fixed array. |
| const_iterator end() const { return data() + size(); } |
| |
| // FixedArray::cend() |
| // |
| // Returns a const iterator to the end of the fixed array. |
| const_iterator cend() const { return end(); } |
| |
| // FixedArray::rbegin() |
| // |
| // Returns a reverse iterator from the end of the fixed array. |
| reverse_iterator rbegin() { return reverse_iterator(end()); } |
| |
| // Overload of FixedArray::rbegin() to return a const reverse iterator from |
| // the end of the fixed array. |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator(end()); |
| } |
| |
| // FixedArray::crbegin() |
| // |
| // Returns a const reverse iterator from the end of the fixed array. |
| const_reverse_iterator crbegin() const { return rbegin(); } |
| |
| // FixedArray::rend() |
| // |
| // Returns a reverse iterator from the beginning of the fixed array. |
| reverse_iterator rend() { return reverse_iterator(begin()); } |
| |
| // Overload of FixedArray::rend() for returning a const reverse iterator |
| // from the beginning of the fixed array. |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(begin()); |
| } |
| |
| // FixedArray::crend() |
| // |
| // Returns a reverse iterator from the beginning of the fixed array. |
| const_reverse_iterator crend() const { return rend(); } |
| |
| // FixedArray::fill() |
| // |
| // Assigns the given `value` to all elements in the fixed array. |
| void fill(const value_type& val) { std::fill(begin(), end(), val); } |
| |
| // Relational operators. Equality operators are elementwise using |
| // `operator==`, while order operators order FixedArrays lexicographically. |
| friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { |
| return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
| } |
| |
| friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { |
| return !(lhs == rhs); |
| } |
| |
| friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { |
| return std::lexicographical_compare( |
| lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
| } |
| |
| friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { |
| return rhs < lhs; |
| } |
| |
| friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { |
| return !(rhs < lhs); |
| } |
| |
| friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { |
| return !(lhs < rhs); |
| } |
| |
| private: |
| // StorageElement |
| // |
| // For FixedArrays with a C-style-array value_type, StorageElement is a POD |
| // wrapper struct called StorageElementWrapper that holds the value_type |
| // instance inside. This is needed for construction and destruction of the |
| // entire array regardless of how many dimensions it has. For all other cases, |
| // StorageElement is just an alias of value_type. |
| // |
| // Maintainer's Note: The simpler solution would be to simply wrap value_type |
| // in a struct whether it's an array or not. That causes some paranoid |
| // diagnostics to misfire, believing that 'data()' returns a pointer to a |
| // single element, rather than the packed array that it really is. |
| // e.g.: |
| // |
| // FixedArray<char> buf(1); |
| // sprintf(buf.data(), "foo"); |
| // |
| // error: call to int __builtin___sprintf_chk(etc...) |
| // will always overflow destination buffer [-Werror] |
| // |
| template <typename OuterT, |
| typename InnerT = typename std::remove_extent<OuterT>::type, |
| size_t InnerN = std::extent<OuterT>::value> |
| struct StorageElementWrapper { |
| InnerT array[InnerN]; |
| }; |
| |
| using StorageElement = |
| typename std::conditional<std::is_array<value_type>::value, |
| StorageElementWrapper<value_type>, |
| value_type>::type; |
| |
| static pointer AsValueType(pointer ptr) { return ptr; } |
| static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { |
| return std::addressof(ptr->array); |
| } |
| |
| static_assert(sizeof(StorageElement) == sizeof(value_type)); |
| static_assert(alignof(StorageElement) == alignof(value_type)); |
| |
| class NonEmptyInlinedStorage { |
| public: |
| StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); } |
| void AnnotateConstruct(size_type) {} |
| void AnnotateDestruct(size_type) {} |
| |
| // #ifdef ADDRESS_SANITIZER |
| // void* RedzoneBegin() { return &redzone_begin_; } |
| // void* RedzoneEnd() { return &redzone_end_ + 1; } |
| // #endif // ADDRESS_SANITIZER |
| |
| private: |
| // ADDRESS_SANITIZER_REDZONE(redzone_begin_); |
| alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])]; |
| // ADDRESS_SANITIZER_REDZONE(redzone_end_); |
| }; |
| |
| class EmptyInlinedStorage { |
| public: |
| StorageElement* data() { return nullptr; } |
| void AnnotateConstruct(size_type) {} |
| void AnnotateDestruct(size_type) {} |
| }; |
| |
| using InlinedStorage = |
| typename std::conditional<inline_elements == 0, |
| EmptyInlinedStorage, |
| NonEmptyInlinedStorage>::type; |
| |
| // Storage |
| // |
| // An instance of Storage manages the inline and out-of-line memory for |
| // instances of FixedArray. This guarantees that even when construction of |
| // individual elements fails in the FixedArray constructor body, the |
| // destructor for Storage will still be called and out-of-line memory will be |
| // properly deallocated. |
| // |
| class Storage : public InlinedStorage { |
| public: |
| Storage(size_type n, const allocator_type& a) |
| : size_alloc_(n, a), data_(InitializeData()) {} |
| |
| ~Storage() noexcept { |
| if (UsingInlinedStorage(size())) { |
| InlinedStorage::AnnotateDestruct(size()); |
| } else { |
| AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); |
| } |
| } |
| |
| size_type size() const { return std::get<0>(size_alloc_); } |
| StorageElement* begin() const { return data_; } |
| StorageElement* end() const { return begin() + size(); } |
| allocator_type& alloc() { return std::get<1>(size_alloc_); } |
| |
| private: |
| static bool UsingInlinedStorage(size_type n) { |
| return n <= inline_elements; |
| } |
| |
| StorageElement* InitializeData() { |
| if (UsingInlinedStorage(size())) { |
| InlinedStorage::AnnotateConstruct(size()); |
| return InlinedStorage::data(); |
| } else { |
| return reinterpret_cast<StorageElement*>( |
| AllocatorTraits::allocate(alloc(), size())); |
| } |
| } |
| |
| // Using std::tuple and not absl::CompressedTuple, as it has a lot of |
| // dependencies to other absl headers. |
| std::tuple<size_type, allocator_type> size_alloc_; |
| StorageElement* data_; |
| }; |
| |
| Storage storage_; |
| }; |
| |
| template <typename T, size_t N, typename A> |
| constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault; |
| |
| template <typename T, size_t N, typename A> |
| constexpr typename FixedArray<T, N, A>::size_type |
| FixedArray<T, N, A>::inline_elements; |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |