|  | #include "ceres/manifold.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  |  | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/fixed_array.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace { | 
|  |  | 
|  | struct CeresQuaternionOrder { | 
|  | static constexpr int kW = 0; | 
|  | static constexpr int kX = 1; | 
|  | static constexpr int kY = 2; | 
|  | static constexpr int kZ = 3; | 
|  | }; | 
|  |  | 
|  | struct EigenQuaternionOrder { | 
|  | static constexpr int kW = 3; | 
|  | static constexpr int kX = 0; | 
|  | static constexpr int kY = 1; | 
|  | static constexpr int kZ = 2; | 
|  | }; | 
|  |  | 
|  | template <typename Order> | 
|  | inline void QuaternionPlusImpl(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) { | 
|  | // x_plus_delta = QuaternionProduct(q_delta, x), where q_delta is the | 
|  | // quaternion constructed from delta. | 
|  | const double norm_delta = std::hypot(delta[0], delta[1], delta[2]); | 
|  |  | 
|  | if (std::fpclassify(norm_delta) == FP_ZERO) { | 
|  | // No change in rotation: return the quaternion as is. | 
|  | std::copy_n(x, 4, x_plus_delta); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double sin_delta_by_delta = (std::sin(norm_delta) / norm_delta); | 
|  | double q_delta[4]; | 
|  | q_delta[Order::kW] = std::cos(norm_delta); | 
|  | q_delta[Order::kX] = sin_delta_by_delta * delta[0]; | 
|  | q_delta[Order::kY] = sin_delta_by_delta * delta[1]; | 
|  | q_delta[Order::kZ] = sin_delta_by_delta * delta[2]; | 
|  |  | 
|  | x_plus_delta[Order::kW] = | 
|  | q_delta[Order::kW] * x[Order::kW] - q_delta[Order::kX] * x[Order::kX] - | 
|  | q_delta[Order::kY] * x[Order::kY] - q_delta[Order::kZ] * x[Order::kZ]; | 
|  | x_plus_delta[Order::kX] = | 
|  | q_delta[Order::kW] * x[Order::kX] + q_delta[Order::kX] * x[Order::kW] + | 
|  | q_delta[Order::kY] * x[Order::kZ] - q_delta[Order::kZ] * x[Order::kY]; | 
|  | x_plus_delta[Order::kY] = | 
|  | q_delta[Order::kW] * x[Order::kY] - q_delta[Order::kX] * x[Order::kZ] + | 
|  | q_delta[Order::kY] * x[Order::kW] + q_delta[Order::kZ] * x[Order::kX]; | 
|  | x_plus_delta[Order::kZ] = | 
|  | q_delta[Order::kW] * x[Order::kZ] + q_delta[Order::kX] * x[Order::kY] - | 
|  | q_delta[Order::kY] * x[Order::kX] + q_delta[Order::kZ] * x[Order::kW]; | 
|  | } | 
|  |  | 
|  | template <typename Order> | 
|  | inline void QuaternionPlusJacobianImpl(const double* x, double* jacobian_ptr) { | 
|  | Eigen::Map<Eigen::Matrix<double, 4, 3, Eigen::RowMajor>> jacobian( | 
|  | jacobian_ptr); | 
|  |  | 
|  | jacobian(Order::kW, 0) = -x[Order::kX]; | 
|  | jacobian(Order::kW, 1) = -x[Order::kY]; | 
|  | jacobian(Order::kW, 2) = -x[Order::kZ]; | 
|  | jacobian(Order::kX, 0) = x[Order::kW]; | 
|  | jacobian(Order::kX, 1) = x[Order::kZ]; | 
|  | jacobian(Order::kX, 2) = -x[Order::kY]; | 
|  | jacobian(Order::kY, 0) = -x[Order::kZ]; | 
|  | jacobian(Order::kY, 1) = x[Order::kW]; | 
|  | jacobian(Order::kY, 2) = x[Order::kX]; | 
|  | jacobian(Order::kZ, 0) = x[Order::kY]; | 
|  | jacobian(Order::kZ, 1) = -x[Order::kX]; | 
|  | jacobian(Order::kZ, 2) = x[Order::kW]; | 
|  | } | 
|  |  | 
|  | template <typename Order> | 
|  | inline void QuaternionMinusImpl(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) { | 
|  | // ambient_y_minus_x = QuaternionProduct(y, -x) where -x is the conjugate of | 
|  | // x. | 
|  | double ambient_y_minus_x[4]; | 
|  | ambient_y_minus_x[Order::kW] = | 
|  | y[Order::kW] * x[Order::kW] + y[Order::kX] * x[Order::kX] + | 
|  | y[Order::kY] * x[Order::kY] + y[Order::kZ] * x[Order::kZ]; | 
|  | ambient_y_minus_x[Order::kX] = | 
|  | -y[Order::kW] * x[Order::kX] + y[Order::kX] * x[Order::kW] - | 
|  | y[Order::kY] * x[Order::kZ] + y[Order::kZ] * x[Order::kY]; | 
|  | ambient_y_minus_x[Order::kY] = | 
|  | -y[Order::kW] * x[Order::kY] + y[Order::kX] * x[Order::kZ] + | 
|  | y[Order::kY] * x[Order::kW] - y[Order::kZ] * x[Order::kX]; | 
|  | ambient_y_minus_x[Order::kZ] = | 
|  | -y[Order::kW] * x[Order::kZ] - y[Order::kX] * x[Order::kY] + | 
|  | y[Order::kY] * x[Order::kX] + y[Order::kZ] * x[Order::kW]; | 
|  |  | 
|  | const double u_norm = std::hypot(ambient_y_minus_x[Order::kX], | 
|  | ambient_y_minus_x[Order::kY], | 
|  | ambient_y_minus_x[Order::kZ]); | 
|  | if (std::fpclassify(u_norm) != FP_ZERO) { | 
|  | const double theta = std::atan2(u_norm, ambient_y_minus_x[Order::kW]); | 
|  | y_minus_x[0] = theta * ambient_y_minus_x[Order::kX] / u_norm; | 
|  | y_minus_x[1] = theta * ambient_y_minus_x[Order::kY] / u_norm; | 
|  | y_minus_x[2] = theta * ambient_y_minus_x[Order::kZ] / u_norm; | 
|  | } else { | 
|  | std::fill_n(y_minus_x, 3, 0.0); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Order> | 
|  | inline void QuaternionMinusJacobianImpl(const double* x, double* jacobian_ptr) { | 
|  | Eigen::Map<Eigen::Matrix<double, 3, 4, Eigen::RowMajor>> jacobian( | 
|  | jacobian_ptr); | 
|  |  | 
|  | jacobian(0, Order::kW) = -x[Order::kX]; | 
|  | jacobian(0, Order::kX) = x[Order::kW]; | 
|  | jacobian(0, Order::kY) = -x[Order::kZ]; | 
|  | jacobian(0, Order::kZ) = x[Order::kY]; | 
|  | jacobian(1, Order::kW) = -x[Order::kY]; | 
|  | jacobian(1, Order::kX) = x[Order::kZ]; | 
|  | jacobian(1, Order::kY) = x[Order::kW]; | 
|  | jacobian(1, Order::kZ) = -x[Order::kX]; | 
|  | jacobian(2, Order::kW) = -x[Order::kZ]; | 
|  | jacobian(2, Order::kX) = -x[Order::kY]; | 
|  | jacobian(2, Order::kY) = x[Order::kX]; | 
|  | jacobian(2, Order::kZ) = x[Order::kW]; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | Manifold::~Manifold() = default; | 
|  |  | 
|  | bool Manifold::RightMultiplyByPlusJacobian(const double* x, | 
|  | const int num_rows, | 
|  | const double* ambient_matrix, | 
|  | double* tangent_matrix) const { | 
|  | const int tangent_size = TangentSize(); | 
|  | if (tangent_size == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const int ambient_size = AmbientSize(); | 
|  | Matrix plus_jacobian(ambient_size, tangent_size); | 
|  | if (!PlusJacobian(x, plus_jacobian.data())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MatrixRef(tangent_matrix, num_rows, tangent_size) = | 
|  | ConstMatrixRef(ambient_matrix, num_rows, ambient_size) * plus_jacobian; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SubsetManifold::SubsetManifold(const int size, | 
|  | const std::vector<int>& constant_parameters) | 
|  |  | 
|  | : tangent_size_(size - constant_parameters.size()), | 
|  | constancy_mask_(size, false) { | 
|  | if (constant_parameters.empty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::vector<int> constant = constant_parameters; | 
|  | std::sort(constant.begin(), constant.end()); | 
|  | CHECK_GE(constant.front(), 0) << "Indices indicating constant parameter must " | 
|  | "be greater than equal to zero."; | 
|  | CHECK_LT(constant.back(), size) | 
|  | << "Indices indicating constant parameter must be less than the size " | 
|  | << "of the parameter block."; | 
|  | CHECK(std::adjacent_find(constant.begin(), constant.end()) == constant.end()) | 
|  | << "The set of constant parameters cannot contain duplicates"; | 
|  |  | 
|  | for (auto index : constant_parameters) { | 
|  | constancy_mask_[index] = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | int SubsetManifold::AmbientSize() const { return constancy_mask_.size(); } | 
|  |  | 
|  | int SubsetManifold::TangentSize() const { return tangent_size_; } | 
|  |  | 
|  | bool SubsetManifold::Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const { | 
|  | const int ambient_size = AmbientSize(); | 
|  | for (int i = 0, j = 0; i < ambient_size; ++i) { | 
|  | if (constancy_mask_[i]) { | 
|  | x_plus_delta[i] = x[i]; | 
|  | } else { | 
|  | x_plus_delta[i] = x[i] + delta[j++]; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SubsetManifold::PlusJacobian(const double* /*x*/, | 
|  | double* plus_jacobian) const { | 
|  | if (tangent_size_ == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const int ambient_size = AmbientSize(); | 
|  | MatrixRef m(plus_jacobian, ambient_size, tangent_size_); | 
|  | m.setZero(); | 
|  | for (int r = 0, c = 0; r < ambient_size; ++r) { | 
|  | if (!constancy_mask_[r]) { | 
|  | m(r, c++) = 1.0; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SubsetManifold::RightMultiplyByPlusJacobian(const double* /*x*/, | 
|  | const int num_rows, | 
|  | const double* ambient_matrix, | 
|  | double* tangent_matrix) const { | 
|  | if (tangent_size_ == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const int ambient_size = AmbientSize(); | 
|  | for (int r = 0; r < num_rows; ++r) { | 
|  | for (int idx = 0, c = 0; idx < ambient_size; ++idx) { | 
|  | if (!constancy_mask_[idx]) { | 
|  | tangent_matrix[r * tangent_size_ + c++] = | 
|  | ambient_matrix[r * ambient_size + idx]; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SubsetManifold::Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const { | 
|  | if (tangent_size_ == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const int ambient_size = AmbientSize(); | 
|  | for (int i = 0, j = 0; i < ambient_size; ++i) { | 
|  | if (!constancy_mask_[i]) { | 
|  | y_minus_x[j++] = y[i] - x[i]; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SubsetManifold::MinusJacobian(const double* /*x*/, | 
|  | double* minus_jacobian) const { | 
|  | const int ambient_size = AmbientSize(); | 
|  | MatrixRef m(minus_jacobian, tangent_size_, ambient_size); | 
|  | m.setZero(); | 
|  | for (int c = 0, r = 0; c < ambient_size; ++c) { | 
|  | if (!constancy_mask_[c]) { | 
|  | m(r++, c) = 1.0; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuaternionManifold::Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const { | 
|  | QuaternionPlusImpl<CeresQuaternionOrder>(x, delta, x_plus_delta); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuaternionManifold::PlusJacobian(const double* x, double* jacobian) const { | 
|  | QuaternionPlusJacobianImpl<CeresQuaternionOrder>(x, jacobian); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuaternionManifold::Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const { | 
|  | QuaternionMinusImpl<CeresQuaternionOrder>(y, x, y_minus_x); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuaternionManifold::MinusJacobian(const double* x, | 
|  | double* jacobian) const { | 
|  | QuaternionMinusJacobianImpl<CeresQuaternionOrder>(x, jacobian); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EigenQuaternionManifold::Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const { | 
|  | QuaternionPlusImpl<EigenQuaternionOrder>(x, delta, x_plus_delta); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EigenQuaternionManifold::PlusJacobian(const double* x, | 
|  | double* jacobian) const { | 
|  | QuaternionPlusJacobianImpl<EigenQuaternionOrder>(x, jacobian); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EigenQuaternionManifold::Minus(const double* y, | 
|  | const double* x, | 
|  | double* y_minus_x) const { | 
|  | QuaternionMinusImpl<EigenQuaternionOrder>(y, x, y_minus_x); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EigenQuaternionManifold::MinusJacobian(const double* x, | 
|  | double* jacobian) const { | 
|  | QuaternionMinusJacobianImpl<EigenQuaternionOrder>(x, jacobian); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres |