| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/partitioned_matrix_view.h" | 
 |  | 
 | #include <memory> | 
 | #include <random> | 
 | #include <sstream> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/casts.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | const double kEpsilon = 1e-14; | 
 |  | 
 | // Param = <problem_id, num_threads> | 
 | using Param = ::testing::tuple<int, int>; | 
 |  | 
 | static std::string ParamInfoToString(testing::TestParamInfo<Param> info) { | 
 |   Param param = info.param; | 
 |   std::stringstream ss; | 
 |   ss << ::testing::get<0>(param) << "_" << ::testing::get<1>(param); | 
 |   return ss.str(); | 
 | } | 
 |  | 
 | class PartitionedMatrixViewTest : public ::testing::TestWithParam<Param> { | 
 |  protected: | 
 |   void SetUp() final { | 
 |     const int problem_id = ::testing::get<0>(GetParam()); | 
 |     const int num_threads = ::testing::get<1>(GetParam()); | 
 |     auto problem = CreateLinearLeastSquaresProblemFromId(problem_id); | 
 |     CHECK(problem != nullptr); | 
 |     A_ = std::move(problem->A); | 
 |     auto block_sparse = down_cast<BlockSparseMatrix*>(A_.get()); | 
 |  | 
 |     options_.num_threads = num_threads; | 
 |     options_.context = &context_; | 
 |     options_.elimination_groups.push_back(problem->num_eliminate_blocks); | 
 |     pmv_ = PartitionedMatrixViewBase::Create(options_, *block_sparse); | 
 |  | 
 |     LinearSolver::Options options_single_threaded = options_; | 
 |     options_single_threaded.num_threads = 1; | 
 |     pmv_single_threaded_ = | 
 |         PartitionedMatrixViewBase::Create(options_, *block_sparse); | 
 |  | 
 |     EXPECT_EQ(pmv_->num_col_blocks_e(), problem->num_eliminate_blocks); | 
 |     EXPECT_EQ(pmv_->num_col_blocks_f(), | 
 |               block_sparse->block_structure()->cols.size() - | 
 |                   problem->num_eliminate_blocks); | 
 |     EXPECT_EQ(pmv_->num_cols(), A_->num_cols()); | 
 |     EXPECT_EQ(pmv_->num_rows(), A_->num_rows()); | 
 |   } | 
 |  | 
 |   double RandDouble() { return distribution_(prng_); } | 
 |  | 
 |   LinearSolver::Options options_; | 
 |   ContextImpl context_; | 
 |   std::unique_ptr<LinearLeastSquaresProblem> problem_; | 
 |   std::unique_ptr<SparseMatrix> A_; | 
 |   std::unique_ptr<PartitionedMatrixViewBase> pmv_; | 
 |   std::unique_ptr<PartitionedMatrixViewBase> pmv_single_threaded_; | 
 |   std::mt19937 prng_; | 
 |   std::uniform_real_distribution<double> distribution_ = | 
 |       std::uniform_real_distribution<double>(0.0, 1.0); | 
 | }; | 
 |  | 
 | TEST_P(PartitionedMatrixViewTest, RightMultiplyAndAccumulateE) { | 
 |   Vector x1(pmv_->num_cols_e()); | 
 |   Vector x2(pmv_->num_cols()); | 
 |   x2.setZero(); | 
 |  | 
 |   for (int i = 0; i < pmv_->num_cols_e(); ++i) { | 
 |     x1(i) = x2(i) = RandDouble(); | 
 |   } | 
 |  | 
 |   Vector expected = Vector::Zero(pmv_->num_rows()); | 
 |   A_->RightMultiplyAndAccumulate(x2.data(), expected.data()); | 
 |  | 
 |   Vector actual = Vector::Zero(pmv_->num_rows()); | 
 |   pmv_->RightMultiplyAndAccumulateE(x1.data(), actual.data()); | 
 |  | 
 |   for (int i = 0; i < pmv_->num_rows(); ++i) { | 
 |     EXPECT_NEAR(actual(i), expected(i), kEpsilon); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(PartitionedMatrixViewTest, RightMultiplyAndAccumulateF) { | 
 |   Vector x1(pmv_->num_cols_f()); | 
 |   Vector x2(pmv_->num_cols()); | 
 |   x2.setZero(); | 
 |  | 
 |   for (int i = 0; i < pmv_->num_cols_f(); ++i) { | 
 |     x1(i) = x2(i + pmv_->num_cols_e()) = RandDouble(); | 
 |   } | 
 |  | 
 |   Vector actual = Vector::Zero(pmv_->num_rows()); | 
 |   pmv_->RightMultiplyAndAccumulateF(x1.data(), actual.data()); | 
 |  | 
 |   Vector expected = Vector::Zero(pmv_->num_rows()); | 
 |   A_->RightMultiplyAndAccumulate(x2.data(), expected.data()); | 
 |  | 
 |   for (int i = 0; i < pmv_->num_rows(); ++i) { | 
 |     EXPECT_NEAR(actual(i), expected(i), kEpsilon); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(PartitionedMatrixViewTest, LeftMultiplyAndAccumulate) { | 
 |   Vector x = Vector::Zero(pmv_->num_rows()); | 
 |   for (int i = 0; i < pmv_->num_rows(); ++i) { | 
 |     x(i) = RandDouble(); | 
 |   } | 
 |   Vector x_pre = x; | 
 |  | 
 |   Vector expected = Vector::Zero(pmv_->num_cols()); | 
 |   Vector e_actual = Vector::Zero(pmv_->num_cols_e()); | 
 |   Vector f_actual = Vector::Zero(pmv_->num_cols_f()); | 
 |  | 
 |   A_->LeftMultiplyAndAccumulate(x.data(), expected.data()); | 
 |   pmv_->LeftMultiplyAndAccumulateE(x.data(), e_actual.data()); | 
 |   pmv_->LeftMultiplyAndAccumulateF(x.data(), f_actual.data()); | 
 |  | 
 |   for (int i = 0; i < pmv_->num_cols(); ++i) { | 
 |     EXPECT_NEAR(expected(i), | 
 |                 (i < pmv_->num_cols_e()) ? e_actual(i) | 
 |                                          : f_actual(i - pmv_->num_cols_e()), | 
 |                 kEpsilon); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(PartitionedMatrixViewTest, BlockDiagonalFtF) { | 
 |   std::unique_ptr<BlockSparseMatrix> block_diagonal_ff( | 
 |       pmv_->CreateBlockDiagonalFtF()); | 
 |   const auto bs_diagonal = block_diagonal_ff->block_structure(); | 
 |   const int num_rows = pmv_->num_rows(); | 
 |   const int num_cols_f = pmv_->num_cols_f(); | 
 |   const int num_cols_e = pmv_->num_cols_e(); | 
 |   const int num_col_blocks_f = pmv_->num_col_blocks_f(); | 
 |   const int num_col_blocks_e = pmv_->num_col_blocks_e(); | 
 |  | 
 |   CHECK_EQ(block_diagonal_ff->num_rows(), num_cols_f); | 
 |   CHECK_EQ(block_diagonal_ff->num_cols(), num_cols_f); | 
 |  | 
 |   EXPECT_EQ(bs_diagonal->cols.size(), num_col_blocks_f); | 
 |   EXPECT_EQ(bs_diagonal->rows.size(), num_col_blocks_f); | 
 |  | 
 |   Matrix EF; | 
 |   A_->ToDenseMatrix(&EF); | 
 |   const auto F = EF.topRightCorner(num_rows, num_cols_f); | 
 |  | 
 |   Matrix expected_FtF = F.transpose() * F; | 
 |   Matrix actual_FtF; | 
 |   block_diagonal_ff->ToDenseMatrix(&actual_FtF); | 
 |  | 
 |   // FtF might be not block-diagonal | 
 |   auto bs = down_cast<BlockSparseMatrix*>(A_.get())->block_structure(); | 
 |   for (int i = 0; i < num_col_blocks_f; ++i) { | 
 |     const auto col_block_f = bs->cols[num_col_blocks_e + i]; | 
 |     const int block_size = col_block_f.size; | 
 |     const int block_pos = col_block_f.position - num_cols_e; | 
 |     const auto cell_expected = | 
 |         expected_FtF.block(block_pos, block_pos, block_size, block_size); | 
 |     auto cell_actual = | 
 |         actual_FtF.block(block_pos, block_pos, block_size, block_size); | 
 |     cell_actual -= cell_expected; | 
 |     EXPECT_NEAR(cell_actual.norm(), 0., kEpsilon); | 
 |   } | 
 |   // There should be nothing remaining outside block-diagonal | 
 |   EXPECT_NEAR(actual_FtF.norm(), 0., kEpsilon); | 
 | } | 
 |  | 
 | TEST_P(PartitionedMatrixViewTest, BlockDiagonalEtE) { | 
 |   std::unique_ptr<BlockSparseMatrix> block_diagonal_ee( | 
 |       pmv_->CreateBlockDiagonalEtE()); | 
 |   const CompressedRowBlockStructure* bs = block_diagonal_ee->block_structure(); | 
 |   const int num_rows = pmv_->num_rows(); | 
 |   const int num_cols_e = pmv_->num_cols_e(); | 
 |   const int num_col_blocks_e = pmv_->num_col_blocks_e(); | 
 |  | 
 |   CHECK_EQ(block_diagonal_ee->num_rows(), num_cols_e); | 
 |   CHECK_EQ(block_diagonal_ee->num_cols(), num_cols_e); | 
 |  | 
 |   EXPECT_EQ(bs->cols.size(), num_col_blocks_e); | 
 |   EXPECT_EQ(bs->rows.size(), num_col_blocks_e); | 
 |  | 
 |   Matrix EF; | 
 |   A_->ToDenseMatrix(&EF); | 
 |   const auto E = EF.topLeftCorner(num_rows, num_cols_e); | 
 |  | 
 |   Matrix expected_EtE = E.transpose() * E; | 
 |   Matrix actual_EtE; | 
 |   block_diagonal_ee->ToDenseMatrix(&actual_EtE); | 
 |  | 
 |   EXPECT_NEAR((expected_EtE - actual_EtE).norm(), 0., kEpsilon); | 
 | } | 
 |  | 
 | TEST_P(PartitionedMatrixViewTest, UpdateBlockDiagonalEtE) { | 
 |   std::unique_ptr<BlockSparseMatrix> block_diagonal_ete( | 
 |       pmv_->CreateBlockDiagonalEtE()); | 
 |   const int num_cols = pmv_->num_cols_e(); | 
 |  | 
 |   Matrix multi_threaded(num_cols, num_cols); | 
 |   pmv_->UpdateBlockDiagonalEtE(block_diagonal_ete.get()); | 
 |   block_diagonal_ete->ToDenseMatrix(&multi_threaded); | 
 |  | 
 |   Matrix single_threaded(num_cols, num_cols); | 
 |   pmv_single_threaded_->UpdateBlockDiagonalEtE(block_diagonal_ete.get()); | 
 |   block_diagonal_ete->ToDenseMatrix(&single_threaded); | 
 |  | 
 |   EXPECT_NEAR((multi_threaded - single_threaded).norm(), 0., kEpsilon); | 
 | } | 
 |  | 
 | TEST_P(PartitionedMatrixViewTest, UpdateBlockDiagonalFtF) { | 
 |   std::unique_ptr<BlockSparseMatrix> block_diagonal_ftf( | 
 |       pmv_->CreateBlockDiagonalFtF()); | 
 |   const int num_cols = pmv_->num_cols_f(); | 
 |  | 
 |   Matrix multi_threaded(num_cols, num_cols); | 
 |   pmv_->UpdateBlockDiagonalFtF(block_diagonal_ftf.get()); | 
 |   block_diagonal_ftf->ToDenseMatrix(&multi_threaded); | 
 |  | 
 |   Matrix single_threaded(num_cols, num_cols); | 
 |   pmv_single_threaded_->UpdateBlockDiagonalFtF(block_diagonal_ftf.get()); | 
 |   block_diagonal_ftf->ToDenseMatrix(&single_threaded); | 
 |  | 
 |   EXPECT_NEAR((multi_threaded - single_threaded).norm(), 0., kEpsilon); | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     ParallelProducts, | 
 |     PartitionedMatrixViewTest, | 
 |     ::testing::Combine(::testing::Values(2, 4, 6), | 
 |                        ::testing::Values(1, 2, 3, 4, 5, 6, 7, 8)), | 
 |     ParamInfoToString); | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |