|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2013 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/covariance_impl.h" | 
|  |  | 
|  | #ifdef CERES_USE_OPENMP | 
|  | #include <omp.h> | 
|  | #endif | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstdlib> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  | #include "Eigen/SVD" | 
|  | #include "ceres/compressed_col_sparse_matrix_utils.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/covariance.h" | 
|  | #include "ceres/crs_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/map_util.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/suitesparse.h" | 
|  | #include "ceres/wall_time.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  |  | 
|  | // Per thread storage for SuiteSparse. | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  |  | 
|  | struct PerThreadContext { | 
|  | explicit PerThreadContext(int num_rows) | 
|  | : solution(NULL), | 
|  | solution_set(NULL), | 
|  | y_workspace(NULL), | 
|  | e_workspace(NULL), | 
|  | rhs(NULL) { | 
|  | rhs = ss.CreateDenseVector(NULL, num_rows, num_rows); | 
|  | } | 
|  |  | 
|  | ~PerThreadContext() { | 
|  | ss.Free(solution); | 
|  | ss.Free(solution_set); | 
|  | ss.Free(y_workspace); | 
|  | ss.Free(e_workspace); | 
|  | ss.Free(rhs); | 
|  | } | 
|  |  | 
|  | cholmod_dense* solution; | 
|  | cholmod_sparse* solution_set; | 
|  | cholmod_dense* y_workspace; | 
|  | cholmod_dense* e_workspace; | 
|  | cholmod_dense* rhs; | 
|  | SuiteSparse ss; | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | typedef vector<pair<const double*, const double*> > CovarianceBlocks; | 
|  |  | 
|  | CovarianceImpl::CovarianceImpl(const Covariance::Options& options) | 
|  | : options_(options), | 
|  | is_computed_(false), | 
|  | is_valid_(false) { | 
|  | evaluate_options_.num_threads = options.num_threads; | 
|  | evaluate_options_.apply_loss_function = options.apply_loss_function; | 
|  | } | 
|  |  | 
|  | CovarianceImpl::~CovarianceImpl() { | 
|  | } | 
|  |  | 
|  | bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks, | 
|  | ProblemImpl* problem) { | 
|  | problem_ = problem; | 
|  | parameter_block_to_row_index_.clear(); | 
|  | covariance_matrix_.reset(NULL); | 
|  | is_valid_ = (ComputeCovarianceSparsity(covariance_blocks, problem) && | 
|  | ComputeCovarianceValues()); | 
|  | is_computed_ = true; | 
|  | return is_valid_; | 
|  | } | 
|  |  | 
|  | bool CovarianceImpl::GetCovarianceBlock(const double* original_parameter_block1, | 
|  | const double* original_parameter_block2, | 
|  | double* covariance_block) const { | 
|  | CHECK(is_computed_) | 
|  | << "Covariance::GetCovarianceBlock called before Covariance::Compute"; | 
|  | CHECK(is_valid_) | 
|  | << "Covariance::GetCovarianceBlock called when Covariance::Compute " | 
|  | << "returned false."; | 
|  |  | 
|  | // If either of the two parameter blocks is constant, then the | 
|  | // covariance block is also zero. | 
|  | if (constant_parameter_blocks_.count(original_parameter_block1) > 0 || | 
|  | constant_parameter_blocks_.count(original_parameter_block2) > 0) { | 
|  | const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); | 
|  | ParameterBlock* block1 = | 
|  | FindOrDie(parameter_map, | 
|  | const_cast<double*>(original_parameter_block1)); | 
|  |  | 
|  | ParameterBlock* block2 = | 
|  | FindOrDie(parameter_map, | 
|  | const_cast<double*>(original_parameter_block2)); | 
|  | const int block1_size = block1->Size(); | 
|  | const int block2_size = block2->Size(); | 
|  | MatrixRef(covariance_block, block1_size, block2_size).setZero(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const double* parameter_block1 = original_parameter_block1; | 
|  | const double* parameter_block2 = original_parameter_block2; | 
|  | const bool transpose = parameter_block1 > parameter_block2; | 
|  | if (transpose) { | 
|  | std::swap(parameter_block1, parameter_block2); | 
|  | } | 
|  |  | 
|  | // Find where in the covariance matrix the block is located. | 
|  | const int row_begin = | 
|  | FindOrDie(parameter_block_to_row_index_, parameter_block1); | 
|  | const int col_begin = | 
|  | FindOrDie(parameter_block_to_row_index_, parameter_block2); | 
|  | const int* rows = covariance_matrix_->rows(); | 
|  | const int* cols = covariance_matrix_->cols(); | 
|  | const int row_size = rows[row_begin + 1] - rows[row_begin]; | 
|  | const int* cols_begin = cols + rows[row_begin]; | 
|  |  | 
|  | // The only part that requires work is walking the compressed column | 
|  | // vector to determine where the set of columns correspnding to the | 
|  | // covariance block begin. | 
|  | int offset = 0; | 
|  | while (cols_begin[offset] != col_begin && offset < row_size) { | 
|  | ++offset; | 
|  | } | 
|  |  | 
|  | if (offset == row_size) { | 
|  | LOG(ERROR) << "Unable to find covariance block for " | 
|  | << original_parameter_block1 << " " | 
|  | << original_parameter_block2; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); | 
|  | ParameterBlock* block1 = | 
|  | FindOrDie(parameter_map, const_cast<double*>(parameter_block1)); | 
|  | ParameterBlock* block2 = | 
|  | FindOrDie(parameter_map, const_cast<double*>(parameter_block2)); | 
|  | const LocalParameterization* local_param1 = block1->local_parameterization(); | 
|  | const LocalParameterization* local_param2 = block2->local_parameterization(); | 
|  | const int block1_size = block1->Size(); | 
|  | const int block1_local_size = block1->LocalSize(); | 
|  | const int block2_size = block2->Size(); | 
|  | const int block2_local_size = block2->LocalSize(); | 
|  |  | 
|  | ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin], | 
|  | block1_size, | 
|  | row_size); | 
|  |  | 
|  | // Fast path when there are no local parameterizations. | 
|  | if (local_param1 == NULL && local_param2 == NULL) { | 
|  | if (transpose) { | 
|  | MatrixRef(covariance_block, block2_size, block1_size) = | 
|  | cov.block(0, offset, block1_size, block2_size).transpose(); | 
|  | } else { | 
|  | MatrixRef(covariance_block, block1_size, block2_size) = | 
|  | cov.block(0, offset, block1_size, block2_size); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If local parameterizations are used then the covariance that has | 
|  | // been computed is in the tangent space and it needs to be lifted | 
|  | // back to the ambient space. | 
|  | // | 
|  | // This is given by the formula | 
|  | // | 
|  | //  C'_12 = J_1 C_12 J_2' | 
|  | // | 
|  | // Where C_12 is the local tangent space covariance for parameter | 
|  | // blocks 1 and 2. J_1 and J_2 are respectively the local to global | 
|  | // jacobians for parameter blocks 1 and 2. | 
|  | // | 
|  | // See Result 5.11 on page 142 of Hartley & Zisserman (2nd Edition) | 
|  | // for a proof. | 
|  | // | 
|  | // TODO(sameeragarwal): Add caching of local parameterization, so | 
|  | // that they are computed just once per parameter block. | 
|  | Matrix block1_jacobian(block1_size, block1_local_size); | 
|  | if (local_param1 == NULL) { | 
|  | block1_jacobian.setIdentity(); | 
|  | } else { | 
|  | local_param1->ComputeJacobian(parameter_block1, block1_jacobian.data()); | 
|  | } | 
|  |  | 
|  | Matrix block2_jacobian(block2_size, block2_local_size); | 
|  | // Fast path if the user is requesting a diagonal block. | 
|  | if (parameter_block1 == parameter_block2) { | 
|  | block2_jacobian = block1_jacobian; | 
|  | } else { | 
|  | if (local_param2 == NULL) { | 
|  | block2_jacobian.setIdentity(); | 
|  | } else { | 
|  | local_param2->ComputeJacobian(parameter_block2, block2_jacobian.data()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (transpose) { | 
|  | MatrixRef(covariance_block, block2_size, block1_size) = | 
|  | block2_jacobian * | 
|  | cov.block(0, offset, block1_local_size, block2_local_size).transpose() * | 
|  | block1_jacobian.transpose(); | 
|  | } else { | 
|  | MatrixRef(covariance_block, block1_size, block2_size) = | 
|  | block1_jacobian * | 
|  | cov.block(0, offset, block1_local_size, block2_local_size) * | 
|  | block2_jacobian.transpose(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Determine the sparsity pattern of the covariance matrix based on | 
|  | // the block pairs requested by the user. | 
|  | bool CovarianceImpl::ComputeCovarianceSparsity( | 
|  | const CovarianceBlocks&  original_covariance_blocks, | 
|  | ProblemImpl* problem) { | 
|  | EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity"); | 
|  |  | 
|  | // Determine an ordering for the parameter block, by sorting the | 
|  | // parameter blocks by their pointers. | 
|  | vector<double*> all_parameter_blocks; | 
|  | problem->GetParameterBlocks(&all_parameter_blocks); | 
|  | const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map(); | 
|  | constant_parameter_blocks_.clear(); | 
|  | vector<double*>& active_parameter_blocks = evaluate_options_.parameter_blocks; | 
|  | active_parameter_blocks.clear(); | 
|  | for (int i = 0; i < all_parameter_blocks.size(); ++i) { | 
|  | double* parameter_block = all_parameter_blocks[i]; | 
|  |  | 
|  | ParameterBlock* block = FindOrDie(parameter_map, parameter_block); | 
|  | if (block->IsConstant()) { | 
|  | constant_parameter_blocks_.insert(parameter_block); | 
|  | } else { | 
|  | active_parameter_blocks.push_back(parameter_block); | 
|  | } | 
|  | } | 
|  |  | 
|  | sort(active_parameter_blocks.begin(), active_parameter_blocks.end()); | 
|  |  | 
|  | // Compute the number of rows.  Map each parameter block to the | 
|  | // first row corresponding to it in the covariance matrix using the | 
|  | // ordering of parameter blocks just constructed. | 
|  | int num_rows = 0; | 
|  | parameter_block_to_row_index_.clear(); | 
|  | for (int i = 0; i < active_parameter_blocks.size(); ++i) { | 
|  | double* parameter_block = active_parameter_blocks[i]; | 
|  | const int parameter_block_size = | 
|  | problem->ParameterBlockLocalSize(parameter_block); | 
|  | parameter_block_to_row_index_[parameter_block] = num_rows; | 
|  | num_rows += parameter_block_size; | 
|  | } | 
|  |  | 
|  | // Compute the number of non-zeros in the covariance matrix.  Along | 
|  | // the way flip any covariance blocks which are in the lower | 
|  | // triangular part of the matrix. | 
|  | int num_nonzeros = 0; | 
|  | CovarianceBlocks covariance_blocks; | 
|  | for (int i = 0; i <  original_covariance_blocks.size(); ++i) { | 
|  | const pair<const double*, const double*>& block_pair = | 
|  | original_covariance_blocks[i]; | 
|  | if (constant_parameter_blocks_.count(block_pair.first) > 0 || | 
|  | constant_parameter_blocks_.count(block_pair.second) > 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int index1 = FindOrDie(parameter_block_to_row_index_, block_pair.first); | 
|  | int index2 = FindOrDie(parameter_block_to_row_index_, block_pair.second); | 
|  | const int size1 = problem->ParameterBlockLocalSize(block_pair.first); | 
|  | const int size2 = problem->ParameterBlockLocalSize(block_pair.second); | 
|  | num_nonzeros += size1 * size2; | 
|  |  | 
|  | // Make sure we are constructing a block upper triangular matrix. | 
|  | if (index1 > index2) { | 
|  | covariance_blocks.push_back(make_pair(block_pair.second, | 
|  | block_pair.first)); | 
|  | } else { | 
|  | covariance_blocks.push_back(block_pair); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (covariance_blocks.size() == 0) { | 
|  | VLOG(2) << "No non-zero covariance blocks found"; | 
|  | covariance_matrix_.reset(NULL); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Sort the block pairs. As a consequence we get the covariance | 
|  | // blocks as they will occur in the CompressedRowSparseMatrix that | 
|  | // will store the covariance. | 
|  | sort(covariance_blocks.begin(), covariance_blocks.end()); | 
|  |  | 
|  | // Fill the sparsity pattern of the covariance matrix. | 
|  | covariance_matrix_.reset( | 
|  | new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros)); | 
|  |  | 
|  | int* rows = covariance_matrix_->mutable_rows(); | 
|  | int* cols = covariance_matrix_->mutable_cols(); | 
|  |  | 
|  | // Iterate over parameter blocks and in turn over the rows of the | 
|  | // covariance matrix. For each parameter block, look in the upper | 
|  | // triangular part of the covariance matrix to see if there are any | 
|  | // blocks requested by the user. If this is the case then fill out a | 
|  | // set of compressed rows corresponding to this parameter block. | 
|  | // | 
|  | // The key thing that makes this loop work is the fact that the | 
|  | // row/columns of the covariance matrix are ordered by the pointer | 
|  | // values of the parameter blocks. Thus iterating over the keys of | 
|  | // parameter_block_to_row_index_ corresponds to iterating over the | 
|  | // rows of the covariance matrix in order. | 
|  | int i = 0;  // index into covariance_blocks. | 
|  | int cursor = 0;  // index into the covariance matrix. | 
|  | for (map<const double*, int>::const_iterator it = | 
|  | parameter_block_to_row_index_.begin(); | 
|  | it != parameter_block_to_row_index_.end(); | 
|  | ++it) { | 
|  | const double* row_block =  it->first; | 
|  | const int row_block_size = problem->ParameterBlockLocalSize(row_block); | 
|  | int row_begin = it->second; | 
|  |  | 
|  | // Iterate over the covariance blocks contained in this row block | 
|  | // and count the number of columns in this row block. | 
|  | int num_col_blocks = 0; | 
|  | int num_columns = 0; | 
|  | for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) { | 
|  | const pair<const double*, const double*>& block_pair = | 
|  | covariance_blocks[j]; | 
|  | if (block_pair.first != row_block) { | 
|  | break; | 
|  | } | 
|  | num_columns += problem->ParameterBlockLocalSize(block_pair.second); | 
|  | } | 
|  |  | 
|  | // Fill out all the compressed rows for this parameter block. | 
|  | for (int r = 0; r < row_block_size; ++r) { | 
|  | rows[row_begin + r] = cursor; | 
|  | for (int c = 0; c < num_col_blocks; ++c) { | 
|  | const double* col_block = covariance_blocks[i + c].second; | 
|  | const int col_block_size = problem->ParameterBlockLocalSize(col_block); | 
|  | int col_begin = FindOrDie(parameter_block_to_row_index_, col_block); | 
|  | for (int k = 0; k < col_block_size; ++k) { | 
|  | cols[cursor++] = col_begin++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | i+= num_col_blocks; | 
|  | } | 
|  |  | 
|  | rows[num_rows] = cursor; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CovarianceImpl::ComputeCovarianceValues() { | 
|  | switch (options_.algorithm_type) { | 
|  | case DENSE_SVD: | 
|  | return ComputeCovarianceValuesUsingDenseSVD(); | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | case SPARSE_CHOLESKY: | 
|  | return ComputeCovarianceValuesUsingSparseCholesky(); | 
|  | case SPARSE_QR: | 
|  | return ComputeCovarianceValuesUsingSparseQR(); | 
|  | #endif | 
|  | default: | 
|  | LOG(ERROR) << "Unsupported covariance estimation algorithm type: " | 
|  | << CovarianceAlgorithmTypeToString(options_.algorithm_type); | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CovarianceImpl::ComputeCovarianceValuesUsingSparseCholesky() { | 
|  | EventLogger event_logger( | 
|  | "CovarianceImpl::ComputeCovarianceValuesUsingSparseCholesky"); | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | if (covariance_matrix_.get() == NULL) { | 
|  | // Nothing to do, all zeros covariance matrix. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SuiteSparse ss; | 
|  |  | 
|  | CRSMatrix jacobian; | 
|  | problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); | 
|  |  | 
|  | event_logger.AddEvent("Evaluate"); | 
|  | // m is a transposed view of the Jacobian. | 
|  | cholmod_sparse cholmod_jacobian_view; | 
|  | cholmod_jacobian_view.nrow = jacobian.num_cols; | 
|  | cholmod_jacobian_view.ncol = jacobian.num_rows; | 
|  | cholmod_jacobian_view.nzmax = jacobian.values.size(); | 
|  | cholmod_jacobian_view.nz = NULL; | 
|  | cholmod_jacobian_view.p = reinterpret_cast<void*>(&jacobian.rows[0]); | 
|  | cholmod_jacobian_view.i = reinterpret_cast<void*>(&jacobian.cols[0]); | 
|  | cholmod_jacobian_view.x = reinterpret_cast<void*>(&jacobian.values[0]); | 
|  | cholmod_jacobian_view.z = NULL; | 
|  | cholmod_jacobian_view.stype = 0;  // Matrix is not symmetric. | 
|  | cholmod_jacobian_view.itype = CHOLMOD_INT; | 
|  | cholmod_jacobian_view.xtype = CHOLMOD_REAL; | 
|  | cholmod_jacobian_view.dtype = CHOLMOD_DOUBLE; | 
|  | cholmod_jacobian_view.sorted = 1; | 
|  | cholmod_jacobian_view.packed = 1; | 
|  |  | 
|  | string message; | 
|  | cholmod_factor* factor = ss.AnalyzeCholesky(&cholmod_jacobian_view, &message); | 
|  | event_logger.AddEvent("Symbolic Factorization"); | 
|  | if (factor == NULL) { | 
|  | LOG(ERROR) << "Covariance estimation failed. " | 
|  | << "CHOLMOD symbolic cholesky factorization returned with: " | 
|  | << message; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LinearSolverTerminationType termination_type = | 
|  | ss.Cholesky(&cholmod_jacobian_view, factor, &message); | 
|  | event_logger.AddEvent("Numeric Factorization"); | 
|  | if (termination_type != LINEAR_SOLVER_SUCCESS) { | 
|  | LOG(ERROR) << "Covariance estimation failed. " | 
|  | << "CHOLMOD numeric cholesky factorization returned with: " | 
|  | << message; | 
|  | ss.Free(factor); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const double reciprocal_condition_number = | 
|  | cholmod_rcond(factor, ss.mutable_cc()); | 
|  |  | 
|  | if (reciprocal_condition_number < | 
|  | options_.min_reciprocal_condition_number) { | 
|  | LOG(ERROR) << "Cholesky factorization of J'J is not reliable. " | 
|  | << "Reciprocal condition number: " | 
|  | << reciprocal_condition_number << " " | 
|  | << "min_reciprocal_condition_number: " | 
|  | << options_.min_reciprocal_condition_number; | 
|  | ss.Free(factor); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const int num_rows = covariance_matrix_->num_rows(); | 
|  | const int* rows = covariance_matrix_->rows(); | 
|  | const int* cols = covariance_matrix_->cols(); | 
|  | double* values = covariance_matrix_->mutable_values(); | 
|  |  | 
|  | // The following loop exploits the fact that the i^th column of A^{-1} | 
|  | // is given by the solution to the linear system | 
|  | // | 
|  | //  A x = e_i | 
|  | // | 
|  | // where e_i is a vector with e(i) = 1 and all other entries zero. | 
|  | // | 
|  | // Since the covariance matrix is symmetric, the i^th row and column | 
|  | // are equal. | 
|  | // | 
|  | // The ifdef separates two different version of SuiteSparse. Newer | 
|  | // versions of SuiteSparse have the cholmod_solve2 function which | 
|  | // re-uses memory across calls. | 
|  | #if (SUITESPARSE_VERSION < 4002) | 
|  | cholmod_dense* rhs = ss.CreateDenseVector(NULL, num_rows, num_rows); | 
|  | double* rhs_x = reinterpret_cast<double*>(rhs->x); | 
|  |  | 
|  | for (int r = 0; r < num_rows; ++r) { | 
|  | int row_begin = rows[r]; | 
|  | int row_end = rows[r + 1]; | 
|  | if (row_end == row_begin) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rhs_x[r] = 1.0; | 
|  | cholmod_dense* solution = ss.Solve(factor, rhs, &message); | 
|  | double* solution_x = reinterpret_cast<double*>(solution->x); | 
|  | for (int idx = row_begin; idx < row_end; ++idx) { | 
|  | const int c = cols[idx]; | 
|  | values[idx] = solution_x[c]; | 
|  | } | 
|  | ss.Free(solution); | 
|  | rhs_x[r] = 0.0; | 
|  | } | 
|  |  | 
|  | ss.Free(rhs); | 
|  | #else  // SUITESPARSE_VERSION < 4002 | 
|  |  | 
|  | const int num_threads = options_.num_threads; | 
|  | vector<PerThreadContext*> contexts(num_threads); | 
|  | for (int i = 0; i < num_threads; ++i) { | 
|  | contexts[i] = new PerThreadContext(num_rows); | 
|  | } | 
|  |  | 
|  | // The first call to cholmod_solve2 is not thread safe, since it | 
|  | // changes the factorization from supernodal to simplicial etc. | 
|  | { | 
|  | PerThreadContext* context = contexts[0]; | 
|  | double* context_rhs_x =  reinterpret_cast<double*>(context->rhs->x); | 
|  | context_rhs_x[0] = 1.0; | 
|  | cholmod_solve2(CHOLMOD_A, | 
|  | factor, | 
|  | context->rhs, | 
|  | NULL, | 
|  | &context->solution, | 
|  | &context->solution_set, | 
|  | &context->y_workspace, | 
|  | &context->e_workspace, | 
|  | context->ss.mutable_cc()); | 
|  | context_rhs_x[0] = 0.0; | 
|  | } | 
|  |  | 
|  | #pragma omp parallel for num_threads(num_threads) schedule(dynamic) | 
|  | for (int r = 0; r < num_rows; ++r) { | 
|  | int row_begin = rows[r]; | 
|  | int row_end = rows[r + 1]; | 
|  | if (row_end == row_begin) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #  ifdef CERES_USE_OPENMP | 
|  | int thread_id = omp_get_thread_num(); | 
|  | #  else | 
|  | int thread_id = 0; | 
|  | #  endif | 
|  |  | 
|  | PerThreadContext* context = contexts[thread_id]; | 
|  | double* context_rhs_x =  reinterpret_cast<double*>(context->rhs->x); | 
|  | context_rhs_x[r] = 1.0; | 
|  |  | 
|  | // TODO(sameeragarwal) There should be a more efficient way | 
|  | // involving the use of Bset but I am unable to make it work right | 
|  | // now. | 
|  | cholmod_solve2(CHOLMOD_A, | 
|  | factor, | 
|  | context->rhs, | 
|  | NULL, | 
|  | &context->solution, | 
|  | &context->solution_set, | 
|  | &context->y_workspace, | 
|  | &context->e_workspace, | 
|  | context->ss.mutable_cc()); | 
|  |  | 
|  | double* solution_x = reinterpret_cast<double*>(context->solution->x); | 
|  | for (int idx = row_begin; idx < row_end; ++idx) { | 
|  | const int c = cols[idx]; | 
|  | values[idx] = solution_x[c]; | 
|  | } | 
|  | context_rhs_x[r] = 0.0; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_threads; ++i) { | 
|  | delete contexts[i]; | 
|  | } | 
|  |  | 
|  | #endif  // SUITESPARSE_VERSION < 4002 | 
|  |  | 
|  | ss.Free(factor); | 
|  | event_logger.AddEvent("Inversion"); | 
|  | return true; | 
|  |  | 
|  | #else  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | return false; | 
|  |  | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  | }; | 
|  |  | 
|  | bool CovarianceImpl::ComputeCovarianceValuesUsingSparseQR() { | 
|  | EventLogger event_logger( | 
|  | "CovarianceImpl::ComputeCovarianceValuesUsingSparseQR"); | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | if (covariance_matrix_.get() == NULL) { | 
|  | // Nothing to do, all zeros covariance matrix. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CRSMatrix jacobian; | 
|  | problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); | 
|  | event_logger.AddEvent("Evaluate"); | 
|  |  | 
|  | // Construct a compressed column form of the Jacobian. | 
|  | const int num_rows = jacobian.num_rows; | 
|  | const int num_cols = jacobian.num_cols; | 
|  | const int num_nonzeros = jacobian.values.size(); | 
|  |  | 
|  | vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0); | 
|  | vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0); | 
|  | vector<double> transpose_values(num_nonzeros, 0); | 
|  |  | 
|  | for (int idx = 0; idx < num_nonzeros; ++idx) { | 
|  | transpose_rows[jacobian.cols[idx] + 1] += 1; | 
|  | } | 
|  |  | 
|  | for (int i = 1; i < transpose_rows.size(); ++i) { | 
|  | transpose_rows[i] += transpose_rows[i - 1]; | 
|  | } | 
|  |  | 
|  | for (int r = 0; r < num_rows; ++r) { | 
|  | for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { | 
|  | const int c = jacobian.cols[idx]; | 
|  | const int transpose_idx = transpose_rows[c]; | 
|  | transpose_cols[transpose_idx] = r; | 
|  | transpose_values[transpose_idx] = jacobian.values[idx]; | 
|  | ++transpose_rows[c]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = transpose_rows.size() - 1; i > 0 ; --i) { | 
|  | transpose_rows[i] = transpose_rows[i - 1]; | 
|  | } | 
|  | transpose_rows[0] = 0; | 
|  |  | 
|  | cholmod_sparse cholmod_jacobian; | 
|  | cholmod_jacobian.nrow = num_rows; | 
|  | cholmod_jacobian.ncol = num_cols; | 
|  | cholmod_jacobian.nzmax = num_nonzeros; | 
|  | cholmod_jacobian.nz = NULL; | 
|  | cholmod_jacobian.p = reinterpret_cast<void*>(&transpose_rows[0]); | 
|  | cholmod_jacobian.i = reinterpret_cast<void*>(&transpose_cols[0]); | 
|  | cholmod_jacobian.x = reinterpret_cast<void*>(&transpose_values[0]); | 
|  | cholmod_jacobian.z = NULL; | 
|  | cholmod_jacobian.stype = 0;  // Matrix is not symmetric. | 
|  | cholmod_jacobian.itype = CHOLMOD_LONG; | 
|  | cholmod_jacobian.xtype = CHOLMOD_REAL; | 
|  | cholmod_jacobian.dtype = CHOLMOD_DOUBLE; | 
|  | cholmod_jacobian.sorted = 1; | 
|  | cholmod_jacobian.packed = 1; | 
|  |  | 
|  | cholmod_common cc; | 
|  | cholmod_l_start(&cc); | 
|  |  | 
|  | cholmod_sparse* R = NULL; | 
|  | SuiteSparse_long* permutation = NULL; | 
|  |  | 
|  | // Compute a Q-less QR factorization of the Jacobian. Since we are | 
|  | // only interested in inverting J'J = R'R, we do not need Q. This | 
|  | // saves memory and gives us R as a permuted compressed column | 
|  | // sparse matrix. | 
|  | // | 
|  | // TODO(sameeragarwal): Currently the symbolic factorization and the | 
|  | // numeric factorization is done at the same time, and this does not | 
|  | // explicitly account for the block column and row structure in the | 
|  | // matrix. When using AMD, we have observed in the past that | 
|  | // computing the ordering with the block matrix is significantly | 
|  | // more efficient, both in runtime as well as the quality of | 
|  | // ordering computed. So, it maybe worth doing that analysis | 
|  | // separately. | 
|  | const SuiteSparse_long rank = | 
|  | SuiteSparseQR<double>(SPQR_ORDERING_BESTAMD, | 
|  | SPQR_DEFAULT_TOL, | 
|  | cholmod_jacobian.ncol, | 
|  | &cholmod_jacobian, | 
|  | &R, | 
|  | &permutation, | 
|  | &cc); | 
|  | event_logger.AddEvent("Numeric Factorization"); | 
|  | CHECK_NOTNULL(permutation); | 
|  | CHECK_NOTNULL(R); | 
|  |  | 
|  | if (rank < cholmod_jacobian.ncol) { | 
|  | LOG(ERROR) << "Jacobian matrix is rank deficient. " | 
|  | << "Number of columns: " << cholmod_jacobian.ncol | 
|  | << " rank: " << rank; | 
|  | free(permutation); | 
|  | cholmod_l_free_sparse(&R, &cc); | 
|  | cholmod_l_finish(&cc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | vector<int> inverse_permutation(num_cols); | 
|  | for (SuiteSparse_long i = 0; i < num_cols; ++i) { | 
|  | inverse_permutation[permutation[i]] = i; | 
|  | } | 
|  |  | 
|  | const int* rows = covariance_matrix_->rows(); | 
|  | const int* cols = covariance_matrix_->cols(); | 
|  | double* values = covariance_matrix_->mutable_values(); | 
|  |  | 
|  | // The following loop exploits the fact that the i^th column of A^{-1} | 
|  | // is given by the solution to the linear system | 
|  | // | 
|  | //  A x = e_i | 
|  | // | 
|  | // where e_i is a vector with e(i) = 1 and all other entries zero. | 
|  | // | 
|  | // Since the covariance matrix is symmetric, the i^th row and column | 
|  | // are equal. | 
|  | const int num_threads = options_.num_threads; | 
|  | scoped_array<double> workspace(new double[num_threads * num_cols]); | 
|  |  | 
|  | #pragma omp parallel for num_threads(num_threads) schedule(dynamic) | 
|  | for (int r = 0; r < num_cols; ++r) { | 
|  | const int row_begin = rows[r]; | 
|  | const int row_end = rows[r + 1]; | 
|  | if (row_end == row_begin) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #  ifdef CERES_USE_OPENMP | 
|  | int thread_id = omp_get_thread_num(); | 
|  | #  else | 
|  | int thread_id = 0; | 
|  | #  endif | 
|  |  | 
|  | double* solution = workspace.get() + thread_id * num_cols; | 
|  | SolveRTRWithSparseRHS<SuiteSparse_long>( | 
|  | num_cols, | 
|  | static_cast<SuiteSparse_long*>(R->i), | 
|  | static_cast<SuiteSparse_long*>(R->p), | 
|  | static_cast<double*>(R->x), | 
|  | inverse_permutation[r], | 
|  | solution); | 
|  | for (int idx = row_begin; idx < row_end; ++idx) { | 
|  | const int c = cols[idx]; | 
|  | values[idx] = solution[inverse_permutation[c]]; | 
|  | } | 
|  | } | 
|  |  | 
|  | free(permutation); | 
|  | cholmod_l_free_sparse(&R, &cc); | 
|  | cholmod_l_finish(&cc); | 
|  | event_logger.AddEvent("Inversion"); | 
|  | return true; | 
|  |  | 
|  | #else  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | return false; | 
|  |  | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  | } | 
|  |  | 
|  | bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() { | 
|  | EventLogger event_logger( | 
|  | "CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD"); | 
|  | if (covariance_matrix_.get() == NULL) { | 
|  | // Nothing to do, all zeros covariance matrix. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CRSMatrix jacobian; | 
|  | problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); | 
|  | event_logger.AddEvent("Evaluate"); | 
|  |  | 
|  | Matrix dense_jacobian(jacobian.num_rows, jacobian.num_cols); | 
|  | dense_jacobian.setZero(); | 
|  | for (int r = 0; r < jacobian.num_rows; ++r) { | 
|  | for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { | 
|  | const int c = jacobian.cols[idx]; | 
|  | dense_jacobian(r, c) = jacobian.values[idx]; | 
|  | } | 
|  | } | 
|  | event_logger.AddEvent("ConvertToDenseMatrix"); | 
|  |  | 
|  | Eigen::JacobiSVD<Matrix> svd(dense_jacobian, | 
|  | Eigen::ComputeThinU | Eigen::ComputeThinV); | 
|  |  | 
|  | event_logger.AddEvent("SingularValueDecomposition"); | 
|  |  | 
|  | const Vector singular_values = svd.singularValues(); | 
|  | const int num_singular_values = singular_values.rows(); | 
|  | Vector inverse_squared_singular_values(num_singular_values); | 
|  | inverse_squared_singular_values.setZero(); | 
|  |  | 
|  | const double max_singular_value = singular_values[0]; | 
|  | const double min_singular_value_ratio = | 
|  | sqrt(options_.min_reciprocal_condition_number); | 
|  |  | 
|  | const bool automatic_truncation = (options_.null_space_rank < 0); | 
|  | const int max_rank = min(num_singular_values, | 
|  | num_singular_values - options_.null_space_rank); | 
|  |  | 
|  | // Compute the squared inverse of the singular values. Truncate the | 
|  | // computation based on min_singular_value_ratio and | 
|  | // null_space_rank. When either of these two quantities are active, | 
|  | // the resulting covariance matrix is a Moore-Penrose inverse | 
|  | // instead of a regular inverse. | 
|  | for (int i = 0; i < max_rank; ++i) { | 
|  | const double singular_value_ratio = singular_values[i] / max_singular_value; | 
|  | if (singular_value_ratio < min_singular_value_ratio) { | 
|  | // Since the singular values are in decreasing order, if | 
|  | // automatic truncation is enabled, then from this point on | 
|  | // all values will fail the ratio test and there is nothing to | 
|  | // do in this loop. | 
|  | if (automatic_truncation) { | 
|  | break; | 
|  | } else { | 
|  | LOG(ERROR) << "Cholesky factorization of J'J is not reliable. " | 
|  | << "Reciprocal condition number: " | 
|  | << singular_value_ratio * singular_value_ratio << " " | 
|  | << "min_reciprocal_condition_number: " | 
|  | << options_.min_reciprocal_condition_number; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | inverse_squared_singular_values[i] = | 
|  | 1.0 / (singular_values[i] * singular_values[i]); | 
|  | } | 
|  |  | 
|  | Matrix dense_covariance = | 
|  | svd.matrixV() * | 
|  | inverse_squared_singular_values.asDiagonal() * | 
|  | svd.matrixV().transpose(); | 
|  | event_logger.AddEvent("PseudoInverse"); | 
|  |  | 
|  | const int num_rows = covariance_matrix_->num_rows(); | 
|  | const int* rows = covariance_matrix_->rows(); | 
|  | const int* cols = covariance_matrix_->cols(); | 
|  | double* values = covariance_matrix_->mutable_values(); | 
|  |  | 
|  | for (int r = 0; r < num_rows; ++r) { | 
|  | for (int idx = rows[r]; idx < rows[r + 1]; ++idx) { | 
|  | const int c = cols[idx]; | 
|  | values[idx] = dense_covariance(r, c); | 
|  | } | 
|  | } | 
|  | event_logger.AddEvent("CopyToCovarianceMatrix"); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |