| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // Generic loop for line search based optimization algorithms. |
| // |
| // This is primarily inpsired by the minFunc packaged written by Mark |
| // Schmidt. |
| // |
| // http://www.di.ens.fr/~mschmidt/Software/minFunc.html |
| // |
| // For details on the theory and implementation see "Numerical |
| // Optimization" by Nocedal & Wright. |
| |
| #include "ceres/line_search_minimizer.h" |
| |
| #include <algorithm> |
| #include <cstdlib> |
| #include <cmath> |
| #include <cstring> |
| #include <limits> |
| #include <string> |
| #include <vector> |
| |
| #include "Eigen/Dense" |
| #include "ceres/array_utils.h" |
| #include "ceres/lbfgs.h" |
| #include "ceres/evaluator.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/line_search.h" |
| #include "ceres/stringprintf.h" |
| #include "ceres/types.h" |
| #include "ceres/wall_time.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| namespace { |
| // Small constant for various floating point issues. |
| const double kEpsilon = 1e-12; |
| } // namespace |
| |
| // Execute the list of IterationCallbacks sequentially. If any one of |
| // the callbacks does not return SOLVER_CONTINUE, then stop and return |
| // its status. |
| CallbackReturnType LineSearchMinimizer::RunCallbacks( |
| const IterationSummary& iteration_summary) { |
| for (int i = 0; i < options_.callbacks.size(); ++i) { |
| const CallbackReturnType status = |
| (*options_.callbacks[i])(iteration_summary); |
| if (status != SOLVER_CONTINUE) { |
| return status; |
| } |
| } |
| return SOLVER_CONTINUE; |
| } |
| |
| void LineSearchMinimizer::Init(const Minimizer::Options& options) { |
| options_ = options; |
| } |
| |
| void LineSearchMinimizer::Minimize(const Minimizer::Options& options, |
| double* parameters, |
| Solver::Summary* summary) { |
| double start_time = WallTimeInSeconds(); |
| double iteration_start_time = start_time; |
| Init(options); |
| |
| Evaluator* evaluator = CHECK_NOTNULL(options_.evaluator); |
| const int num_parameters = evaluator->NumParameters(); |
| const int num_effective_parameters = evaluator->NumEffectiveParameters(); |
| |
| summary->termination_type = NO_CONVERGENCE; |
| summary->num_successful_steps = 0; |
| summary->num_unsuccessful_steps = 0; |
| |
| VectorRef x(parameters, num_parameters); |
| |
| Vector gradient(num_effective_parameters); |
| double gradient_squared_norm; |
| Vector previous_gradient(num_effective_parameters); |
| Vector gradient_change(num_effective_parameters); |
| double previous_gradient_squared_norm = 0.0; |
| |
| Vector search_direction(num_effective_parameters); |
| Vector previous_search_direction(num_effective_parameters); |
| |
| Vector delta(num_effective_parameters); |
| Vector x_plus_delta(num_parameters); |
| |
| double directional_derivative = 0.0; |
| double previous_directional_derivative = 0.0; |
| |
| IterationSummary iteration_summary; |
| iteration_summary.iteration = 0; |
| iteration_summary.step_is_valid = false; |
| iteration_summary.step_is_successful = false; |
| iteration_summary.cost_change = 0.0; |
| iteration_summary.gradient_max_norm = 0.0; |
| iteration_summary.step_norm = 0.0; |
| iteration_summary.linear_solver_iterations = 0; |
| iteration_summary.step_solver_time_in_seconds = 0; |
| |
| // Do initial cost and Jacobian evaluation. |
| double cost = 0.0; |
| double previous_cost = 0.0; |
| if (!evaluator->Evaluate(x.data(), &cost, NULL, gradient.data(), NULL)) { |
| LOG(WARNING) << "Terminating: Cost and gradient evaluation failed."; |
| summary->termination_type = NUMERICAL_FAILURE; |
| return; |
| } |
| |
| gradient_squared_norm = gradient.squaredNorm(); |
| iteration_summary.cost = cost + summary->fixed_cost; |
| iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); |
| |
| // The initial gradient max_norm is bounded from below so that we do |
| // not divide by zero. |
| const double gradient_max_norm_0 = |
| max(iteration_summary.gradient_max_norm, kEpsilon); |
| const double absolute_gradient_tolerance = |
| options_.gradient_tolerance * gradient_max_norm_0; |
| |
| if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| summary->termination_type = GRADIENT_TOLERANCE; |
| VLOG(1) << "Terminating: Gradient tolerance reached." |
| << "Relative gradient max norm: " |
| << iteration_summary.gradient_max_norm / gradient_max_norm_0 |
| << " <= " << options_.gradient_tolerance; |
| return; |
| } |
| |
| iteration_summary.iteration_time_in_seconds = |
| WallTimeInSeconds() - iteration_start_time; |
| iteration_summary.cumulative_time_in_seconds = |
| WallTimeInSeconds() - start_time |
| + summary->preprocessor_time_in_seconds; |
| summary->iterations.push_back(iteration_summary); |
| |
| // Call the various callbacks. TODO(sameeragarwal): Here and in |
| // trust_region_minimizer make this into a function that can be |
| // shared. |
| switch (RunCallbacks(iteration_summary)) { |
| case SOLVER_TERMINATE_SUCCESSFULLY: |
| summary->termination_type = USER_SUCCESS; |
| VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; |
| return; |
| case SOLVER_ABORT: |
| summary->termination_type = USER_ABORT; |
| VLOG(1) << "Terminating: User callback returned USER_ABORT."; |
| return; |
| case SOLVER_CONTINUE: |
| break; |
| default: |
| LOG(FATAL) << "Unknown type of user callback status"; |
| } |
| |
| LineSearchFunction line_search_function(evaluator); |
| LineSearch::Options line_search_options; |
| line_search_options.function = &line_search_function; |
| |
| // TODO(sameeragarwal): Make this parameterizable over different |
| // line searches. |
| ArmijoLineSearch line_search; |
| LineSearch::Summary line_search_summary; |
| |
| scoped_ptr<LBFGS> lbfgs; |
| if (options_.line_search_direction_type == ceres::LBFGS) { |
| lbfgs.reset(new LBFGS(num_effective_parameters, options_.max_lbfgs_rank)); |
| } |
| |
| while (true) { |
| iteration_start_time = WallTimeInSeconds(); |
| if (iteration_summary.iteration >= options_.max_num_iterations) { |
| summary->termination_type = NO_CONVERGENCE; |
| VLOG(1) << "Terminating: Maximum number of iterations reached."; |
| break; |
| } |
| |
| const double total_solver_time = iteration_start_time - start_time + |
| summary->preprocessor_time_in_seconds; |
| if (total_solver_time >= options_.max_solver_time_in_seconds) { |
| summary->termination_type = NO_CONVERGENCE; |
| VLOG(1) << "Terminating: Maximum solver time reached."; |
| break; |
| } |
| |
| previous_search_direction = search_direction; |
| |
| iteration_summary = IterationSummary(); |
| iteration_summary.iteration = summary->iterations.back().iteration + 1; |
| iteration_summary.step_is_valid = false; |
| iteration_summary.step_is_successful = false; |
| |
| if (iteration_summary.iteration == 1) { |
| search_direction = -gradient; |
| directional_derivative = -gradient_squared_norm; |
| } else { |
| if (lbfgs.get() != NULL) { |
| lbfgs->Update(delta, gradient_change); |
| } |
| |
| // TODO(sameeragarwal): This should probably be refactored into |
| // a set of functions. But we will do that once things settle |
| // down in this solver. |
| switch (options_.line_search_direction_type) { |
| case STEEPEST_DESCENT: |
| search_direction = -gradient; |
| directional_derivative = -gradient_squared_norm; |
| break; |
| |
| case NONLINEAR_CONJUGATE_GRADIENT: |
| { |
| double beta = 0.0; |
| |
| switch (options_.nonlinear_conjugate_gradient_type) { |
| case FLETCHER_REEVES: |
| beta = gradient.squaredNorm() / |
| previous_gradient_squared_norm; |
| break; |
| |
| case POLAK_RIBIRERE: |
| gradient_change = gradient - previous_gradient; |
| beta = gradient.dot(gradient_change) / |
| previous_gradient_squared_norm; |
| break; |
| |
| case HESTENES_STIEFEL: |
| gradient_change = gradient - previous_gradient; |
| beta = gradient.dot(gradient_change) / |
| previous_search_direction.dot(gradient_change); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " |
| << options_.nonlinear_conjugate_gradient_type; |
| } |
| |
| search_direction = -gradient + beta * previous_search_direction; |
| } |
| |
| directional_derivative = gradient.dot(search_direction); |
| if (directional_derivative > -options.function_tolerance) { |
| LOG(WARNING) << "Restarting non-linear conjugate gradients: " |
| << directional_derivative; |
| search_direction = -gradient; |
| directional_derivative = -gradient_squared_norm; |
| } |
| break; |
| |
| case ceres::LBFGS: |
| search_direction.setZero(); |
| lbfgs->RightMultiply(gradient.data(), search_direction.data()); |
| search_direction *= -1.0; |
| directional_derivative = gradient.dot(search_direction); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown line search direction type: " |
| << options_.line_search_direction_type; |
| } |
| } |
| |
| // TODO(sameeragarwal): Refactor this into its own object and add |
| // explanations for the various choices. |
| const double initial_step_size = (iteration_summary.iteration == 1) |
| ? min(1.0, 1.0 / gradient.lpNorm<Eigen::Infinity>()) |
| : min(1.0, 2.0 * (cost - previous_cost) / directional_derivative); |
| |
| previous_cost = cost; |
| previous_gradient = gradient; |
| previous_gradient_squared_norm = gradient_squared_norm; |
| previous_directional_derivative = directional_derivative; |
| |
| line_search_function.Init(x, search_direction); |
| line_search.Search(line_search_options, |
| initial_step_size, |
| cost, |
| directional_derivative, |
| &line_search_summary); |
| |
| delta = line_search_summary.optimal_step_size * search_direction; |
| // TODO(sameeragarwal): Collect stats. |
| if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data()) || |
| !evaluator->Evaluate(x_plus_delta.data(), |
| &cost, |
| NULL, |
| gradient.data(), |
| NULL)) { |
| LOG(WARNING) << "Evaluation failed."; |
| cost = previous_cost; |
| gradient = previous_gradient; |
| } else { |
| x = x_plus_delta; |
| gradient_squared_norm = gradient.squaredNorm(); |
| } |
| |
| |
| iteration_summary.cost = cost + summary->fixed_cost; |
| iteration_summary.cost_change = previous_cost - cost; |
| iteration_summary.step_norm = delta.norm(); |
| iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); |
| iteration_summary.step_is_valid = true; |
| iteration_summary.step_is_successful = true; |
| iteration_summary.step_norm = delta.norm(); |
| iteration_summary.step_size = line_search_summary.optimal_step_size; |
| iteration_summary.line_search_function_evaluations = |
| line_search_summary.num_evaluations; |
| |
| if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| summary->termination_type = GRADIENT_TOLERANCE; |
| VLOG(1) << "Terminating: Gradient tolerance reached." |
| << "Relative gradient max norm: " |
| << iteration_summary.gradient_max_norm / gradient_max_norm_0 |
| << " <= " << options_.gradient_tolerance; |
| break; |
| } |
| |
| const double absolute_function_tolerance = |
| options_.function_tolerance * previous_cost; |
| if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { |
| VLOG(1) << "Terminating. Function tolerance reached. " |
| << "|cost_change|/cost: " |
| << fabs(iteration_summary.cost_change) / previous_cost |
| << " <= " << options_.function_tolerance; |
| summary->termination_type = FUNCTION_TOLERANCE; |
| return; |
| } |
| |
| iteration_summary.iteration_time_in_seconds = |
| WallTimeInSeconds() - iteration_start_time; |
| iteration_summary.cumulative_time_in_seconds = |
| WallTimeInSeconds() - start_time |
| + summary->preprocessor_time_in_seconds; |
| summary->iterations.push_back(iteration_summary); |
| |
| switch (RunCallbacks(iteration_summary)) { |
| case SOLVER_TERMINATE_SUCCESSFULLY: |
| summary->termination_type = USER_SUCCESS; |
| VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; |
| return; |
| case SOLVER_ABORT: |
| summary->termination_type = USER_ABORT; |
| VLOG(1) << "Terminating: User callback returned USER_ABORT."; |
| return; |
| case SOLVER_CONTINUE: |
| break; |
| default: |
| LOG(FATAL) << "Unknown type of user callback status"; |
| } |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |