| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // An example of solving a dynamically sized problem with various | 
 | // solvers and loss functions. | 
 | // | 
 | // For a simpler bare bones example of doing bundle adjustment with | 
 | // Ceres, please see simple_bundle_adjuster.cc. | 
 | // | 
 | // NOTE: This example will not compile without gflags and SuiteSparse. | 
 | // | 
 | // The problem being solved here is known as a Bundle Adjustment | 
 | // problem in computer vision. Given a set of 3d points X_1, ..., X_n, | 
 | // a set of cameras P_1, ..., P_m. If the point X_i is visible in | 
 | // image j, then there is a 2D observation u_ij that is the expected | 
 | // projection of X_i using P_j. The aim of this optimization is to | 
 | // find values of X_i and P_j such that the reprojection error | 
 | // | 
 | //    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2 | 
 | // | 
 | // is minimized. | 
 | // | 
 | // The problem used here comes from a collection of bundle adjustment | 
 | // problems published at University of Washington. | 
 | // http://grail.cs.washington.edu/projects/bal | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <cstdio> | 
 | #include <cstdlib> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <thread> | 
 | #include <vector> | 
 |  | 
 | #include "absl/flags/flag.h" | 
 | #include "absl/flags/parse.h" | 
 | #include "absl/log/check.h" | 
 | #include "absl/log/initialize.h" | 
 | #include "absl/log/log.h" | 
 | #include "absl/time/clock.h" | 
 | #include "absl/time/time.h" | 
 | #include "bal_problem.h" | 
 | #include "ceres/ceres.h" | 
 | #include "snavely_reprojection_error.h" | 
 |  | 
 | // clang-format makes the gflags definitions too verbose | 
 | // clang-format off | 
 |  | 
 | ABSL_FLAG(std::string, input, "", "Input File name"); | 
 | ABSL_FLAG(std::string, trust_region_strategy, "levenberg_marquardt", | 
 |               "Options are: levenberg_marquardt, dogleg."); | 
 | ABSL_FLAG(std::string, dogleg, "traditional_dogleg", "Options are: traditional_dogleg," | 
 |               "subspace_dogleg."); | 
 |  | 
 | ABSL_FLAG(bool, inner_iterations, false, "Use inner iterations to non-linearly " | 
 |             "refine each successful trust region step."); | 
 |  | 
 | ABSL_FLAG(std::string, blocks_for_inner_iterations, "automatic", "Options are: " | 
 |               "automatic, cameras, points, cameras,points, points,cameras"); | 
 |  | 
 | ABSL_FLAG(std::string, linear_solver, "sparse_schur", "Options are: " | 
 |               "sparse_schur, dense_schur, iterative_schur, " | 
 |               "sparse_normal_cholesky, dense_qr, dense_normal_cholesky, " | 
 |               "and cgnr."); | 
 | ABSL_FLAG(bool, explicit_schur_complement, false, "If using ITERATIVE_SCHUR " | 
 |             "then explicitly compute the Schur complement."); | 
 | ABSL_FLAG(std::string, preconditioner, "jacobi", "Options are: " | 
 |               "identity, jacobi, schur_jacobi, schur_power_series_expansion, cluster_jacobi, " | 
 |               "cluster_tridiagonal."); | 
 | ABSL_FLAG(std::string, visibility_clustering, "canonical_views", | 
 |               "single_linkage, canonical_views"); | 
 | ABSL_FLAG(bool, use_spse_initialization, false, | 
 |             "Use power series expansion to initialize the solution in ITERATIVE_SCHUR linear solver."); | 
 |  | 
 | ABSL_FLAG(std::string, sparse_linear_algebra_library, "suite_sparse", | 
 |               "Options are: suite_sparse, accelerate_sparse, eigen_sparse and cuda_sparse"); | 
 | ABSL_FLAG(std::string, dense_linear_algebra_library, "eigen", | 
 |               "Options are: eigen, lapack, and cuda"); | 
 | ABSL_FLAG(std::string, ordering_type, "amd", "Options are: amd, nesdis"); | 
 | ABSL_FLAG(std::string, linear_solver_ordering, "user", | 
 |               "Options are: automatic and user"); | 
 |  | 
 | ABSL_FLAG(bool, use_quaternions, false, "If true, uses quaternions to represent " | 
 |             "rotations. If false, angle axis is used."); | 
 | ABSL_FLAG(bool, use_manifolds, false, "For quaternions, use a manifold."); | 
 | ABSL_FLAG(bool, robustify, false, "Use a robust loss function."); | 
 |  | 
 | ABSL_FLAG(double, eta, 1e-2, "Default value for eta. Eta determines the " | 
 |               "accuracy of each linear solve of the truncated newton step. " | 
 |               "Changing this parameter can affect solve performance."); | 
 |  | 
 | ABSL_FLAG(int32_t, num_threads, -1, "Number of threads. -1 = std::thread::hardware_concurrency."); | 
 | ABSL_FLAG(int32_t, num_iterations, 5, "Number of iterations."); | 
 | ABSL_FLAG(int32_t, max_linear_solver_iterations, 500, "Maximum number of iterations" | 
 |             " for solution of linear system."); | 
 | ABSL_FLAG(double, spse_tolerance, 0.1, | 
 |              "Tolerance to reach during the iterations of power series expansion initialization or preconditioning."); | 
 | ABSL_FLAG(int32_t, max_num_spse_iterations, 5, | 
 |              "Maximum number of iterations for power series expansion initialization or preconditioning."); | 
 | ABSL_FLAG(double, max_solver_time, 1e32, "Maximum solve time in seconds."); | 
 | ABSL_FLAG(bool, nonmonotonic_steps, false, "Trust region algorithm can use" | 
 |             " nonmonotic steps."); | 
 |  | 
 | ABSL_FLAG(double, rotation_sigma, 0.0, "Standard deviation of camera rotation " | 
 |               "perturbation."); | 
 | ABSL_FLAG(double, translation_sigma, 0.0, "Standard deviation of the camera " | 
 |               "translation perturbation."); | 
 | ABSL_FLAG(double, point_sigma, 0.0, "Standard deviation of the point " | 
 |               "perturbation."); | 
 | ABSL_FLAG(int32_t, random_seed, 38401, "Random seed used to set the state " | 
 |              "of the pseudo random number generator used to generate " | 
 |              "the perturbations."); | 
 | ABSL_FLAG(bool, line_search, false, "Use a line search instead of trust region " | 
 |             "algorithm."); | 
 | ABSL_FLAG(bool, mixed_precision_solves, false, "Use mixed precision solves."); | 
 | ABSL_FLAG(int32_t, max_num_refinement_iterations, 0, "Iterative refinement iterations"); | 
 | ABSL_FLAG(std::string, initial_ply, "", "Export the BAL file data as a PLY file."); | 
 | ABSL_FLAG(std::string, final_ply, "", "Export the refined BAL file data as a PLY " | 
 |               "file."); | 
 | // clang-format on | 
 |  | 
 | namespace ceres::examples { | 
 | namespace { | 
 |  | 
 | void SetLinearSolver(Solver::Options* options) { | 
 |   CHECK(StringToLinearSolverType(absl::GetFlag(FLAGS_linear_solver), | 
 |                                  &options->linear_solver_type)); | 
 |   CHECK(StringToPreconditionerType(absl::GetFlag(FLAGS_preconditioner), | 
 |                                    &options->preconditioner_type)); | 
 |   CHECK(StringToVisibilityClusteringType( | 
 |       absl::GetFlag(FLAGS_visibility_clustering), | 
 |       &options->visibility_clustering_type)); | 
 |   CHECK(StringToSparseLinearAlgebraLibraryType( | 
 |       absl::GetFlag(FLAGS_sparse_linear_algebra_library), | 
 |       &options->sparse_linear_algebra_library_type)); | 
 |   CHECK(StringToDenseLinearAlgebraLibraryType( | 
 |       absl::GetFlag(FLAGS_dense_linear_algebra_library), | 
 |       &options->dense_linear_algebra_library_type)); | 
 |   CHECK( | 
 |       StringToLinearSolverOrderingType(absl::GetFlag(FLAGS_ordering_type), | 
 |                                        &options->linear_solver_ordering_type)); | 
 |   options->use_explicit_schur_complement = | 
 |       absl::GetFlag(FLAGS_explicit_schur_complement); | 
 |   options->use_mixed_precision_solves = | 
 |       absl::GetFlag(FLAGS_mixed_precision_solves); | 
 |   options->max_num_refinement_iterations = | 
 |       absl::GetFlag(FLAGS_max_num_refinement_iterations); | 
 |   options->max_linear_solver_iterations = | 
 |       absl::GetFlag(FLAGS_max_linear_solver_iterations); | 
 |   options->use_spse_initialization = | 
 |       absl::GetFlag(FLAGS_use_spse_initialization); | 
 |   options->spse_tolerance = absl::GetFlag(FLAGS_spse_tolerance); | 
 |   options->max_num_spse_iterations = | 
 |       absl::GetFlag(FLAGS_max_num_spse_iterations); | 
 | } | 
 |  | 
 | void SetOrdering(BALProblem* bal_problem, Solver::Options* options) { | 
 |   const int num_points = bal_problem->num_points(); | 
 |   const int point_block_size = bal_problem->point_block_size(); | 
 |   double* points = bal_problem->mutable_points(); | 
 |  | 
 |   const int num_cameras = bal_problem->num_cameras(); | 
 |   const int camera_block_size = bal_problem->camera_block_size(); | 
 |   double* cameras = bal_problem->mutable_cameras(); | 
 |  | 
 |   if (options->use_inner_iterations) { | 
 |     if (absl::GetFlag(FLAGS_blocks_for_inner_iterations) == "cameras") { | 
 |       LOG(INFO) << "Camera blocks for inner iterations"; | 
 |       options->inner_iteration_ordering = | 
 |           std::make_shared<ParameterBlockOrdering>(); | 
 |       for (int i = 0; i < num_cameras; ++i) { | 
 |         options->inner_iteration_ordering->AddElementToGroup( | 
 |             cameras + camera_block_size * i, 0); | 
 |       } | 
 |     } else if (absl::GetFlag(FLAGS_blocks_for_inner_iterations) == "points") { | 
 |       LOG(INFO) << "Point blocks for inner iterations"; | 
 |       options->inner_iteration_ordering = | 
 |           std::make_shared<ParameterBlockOrdering>(); | 
 |       for (int i = 0; i < num_points; ++i) { | 
 |         options->inner_iteration_ordering->AddElementToGroup( | 
 |             points + point_block_size * i, 0); | 
 |       } | 
 |     } else if (absl::GetFlag(FLAGS_blocks_for_inner_iterations) == | 
 |                "cameras,points") { | 
 |       LOG(INFO) << "Camera followed by point blocks for inner iterations"; | 
 |       options->inner_iteration_ordering = | 
 |           std::make_shared<ParameterBlockOrdering>(); | 
 |       for (int i = 0; i < num_cameras; ++i) { | 
 |         options->inner_iteration_ordering->AddElementToGroup( | 
 |             cameras + camera_block_size * i, 0); | 
 |       } | 
 |       for (int i = 0; i < num_points; ++i) { | 
 |         options->inner_iteration_ordering->AddElementToGroup( | 
 |             points + point_block_size * i, 1); | 
 |       } | 
 |     } else if (absl::GetFlag(FLAGS_blocks_for_inner_iterations) == | 
 |                "points,cameras") { | 
 |       LOG(INFO) << "Point followed by camera blocks for inner iterations"; | 
 |       options->inner_iteration_ordering = | 
 |           std::make_shared<ParameterBlockOrdering>(); | 
 |       for (int i = 0; i < num_cameras; ++i) { | 
 |         options->inner_iteration_ordering->AddElementToGroup( | 
 |             cameras + camera_block_size * i, 1); | 
 |       } | 
 |       for (int i = 0; i < num_points; ++i) { | 
 |         options->inner_iteration_ordering->AddElementToGroup( | 
 |             points + point_block_size * i, 0); | 
 |       } | 
 |     } else if (absl::GetFlag(FLAGS_blocks_for_inner_iterations) == | 
 |                "automatic") { | 
 |       LOG(INFO) << "Choosing automatic blocks for inner iterations"; | 
 |     } else { | 
 |       LOG(FATAL) << "Unknown block type for inner iterations: " | 
 |                  << absl::GetFlag(FLAGS_blocks_for_inner_iterations); | 
 |     } | 
 |   } | 
 |  | 
 |   // Bundle adjustment problems have a sparsity structure that makes | 
 |   // them amenable to more specialized and much more efficient | 
 |   // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and | 
 |   // ITERATIVE_SCHUR solvers make use of this specialized | 
 |   // structure. | 
 |   // | 
 |   // This can either be done by specifying a | 
 |   // Options::linear_solver_ordering or having Ceres figure it out | 
 |   // automatically using a greedy maximum independent set algorithm. | 
 |   if (absl::GetFlag(FLAGS_linear_solver_ordering) == "user") { | 
 |     auto* ordering = new ceres::ParameterBlockOrdering; | 
 |  | 
 |     // The points come before the cameras. | 
 |     for (int i = 0; i < num_points; ++i) { | 
 |       ordering->AddElementToGroup(points + point_block_size * i, 0); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < num_cameras; ++i) { | 
 |       // When using axis-angle, there is a single parameter block for | 
 |       // the entire camera. | 
 |       ordering->AddElementToGroup(cameras + camera_block_size * i, 1); | 
 |     } | 
 |  | 
 |     options->linear_solver_ordering.reset(ordering); | 
 |   } | 
 | } | 
 |  | 
 | void SetMinimizerOptions(Solver::Options* options) { | 
 |   options->max_num_iterations = absl::GetFlag(FLAGS_num_iterations); | 
 |   options->minimizer_progress_to_stdout = true; | 
 |   if (absl::GetFlag(FLAGS_num_threads) == -1) { | 
 |     const int num_available_threads = | 
 |         static_cast<int>(std::thread::hardware_concurrency()); | 
 |     if (num_available_threads > 0) { | 
 |       options->num_threads = num_available_threads; | 
 |     } | 
 |   } else { | 
 |     options->num_threads = absl::GetFlag(FLAGS_num_threads); | 
 |   } | 
 |   CHECK_GE(options->num_threads, 1); | 
 |  | 
 |   options->eta = absl::GetFlag(FLAGS_eta); | 
 |   options->max_solver_time_in_seconds = absl::GetFlag(FLAGS_max_solver_time); | 
 |   options->use_nonmonotonic_steps = absl::GetFlag(FLAGS_nonmonotonic_steps); | 
 |   if (absl::GetFlag(FLAGS_line_search)) { | 
 |     options->minimizer_type = ceres::LINE_SEARCH; | 
 |   } | 
 |  | 
 |   CHECK(StringToTrustRegionStrategyType( | 
 |       absl::GetFlag(FLAGS_trust_region_strategy), | 
 |       &options->trust_region_strategy_type)); | 
 |   CHECK(StringToDoglegType(absl::GetFlag(FLAGS_dogleg), &options->dogleg_type)); | 
 |   options->use_inner_iterations = absl::GetFlag(FLAGS_inner_iterations); | 
 | } | 
 |  | 
 | void SetSolverOptionsFromFlags(BALProblem* bal_problem, | 
 |                                Solver::Options* options) { | 
 |   SetMinimizerOptions(options); | 
 |   SetLinearSolver(options); | 
 |   SetOrdering(bal_problem, options); | 
 | } | 
 |  | 
 | void BuildProblem(BALProblem* bal_problem, Problem* problem) { | 
 |   const absl::Time start_time = absl::Now(); | 
 |   const int point_block_size = bal_problem->point_block_size(); | 
 |   const int camera_block_size = bal_problem->camera_block_size(); | 
 |   double* points = bal_problem->mutable_points(); | 
 |   double* cameras = bal_problem->mutable_cameras(); | 
 |  | 
 |   // Observations is 2*num_observations long array observations = | 
 |   // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x | 
 |   // and y positions of the observation. | 
 |   const double* observations = bal_problem->observations(); | 
 |   for (int i = 0; i < bal_problem->num_observations(); ++i) { | 
 |     CostFunction* cost_function; | 
 |     // Each Residual block takes a point and a camera as input and | 
 |     // outputs a 2 dimensional residual. | 
 |     cost_function = (absl::GetFlag(FLAGS_use_quaternions)) | 
 |                         ? SnavelyReprojectionErrorWithQuaternions::Create( | 
 |                               observations[2 * i + 0], observations[2 * i + 1]) | 
 |                         : SnavelyReprojectionError::Create( | 
 |                               observations[2 * i + 0], observations[2 * i + 1]); | 
 |  | 
 |     // If enabled use Huber's loss function. | 
 |     LossFunction* loss_function = | 
 |         absl::GetFlag(FLAGS_robustify) ? new HuberLoss(1.0) : nullptr; | 
 |  | 
 |     // Each observation corresponds to a pair of a camera and a point | 
 |     // which are identified by camera_index()[i] and point_index()[i] | 
 |     // respectively. | 
 |     double* camera = | 
 |         cameras + camera_block_size * bal_problem->camera_index()[i]; | 
 |     double* point = points + point_block_size * bal_problem->point_index()[i]; | 
 |     problem->AddResidualBlock(cost_function, loss_function, camera, point); | 
 |   } | 
 |  | 
 |   if (absl::GetFlag(FLAGS_use_quaternions) && | 
 |       absl::GetFlag(FLAGS_use_manifolds)) { | 
 |     Manifold* camera_manifold = | 
 |         new ProductManifold<QuaternionManifold, EuclideanManifold<6>>{}; | 
 |     for (int i = 0; i < bal_problem->num_cameras(); ++i) { | 
 |       problem->SetManifold(cameras + camera_block_size * i, camera_manifold); | 
 |     } | 
 |   } | 
 |   LOG(INFO) << "Time to build problem: " << absl::Now() - start_time; | 
 | } | 
 |  | 
 | void SolveProblem(const char* filename) { | 
 |   BALProblem bal_problem(filename, absl::GetFlag(FLAGS_use_quaternions)); | 
 |   if (!absl::GetFlag(FLAGS_initial_ply).empty()) { | 
 |     bal_problem.WriteToPLYFile(absl::GetFlag(FLAGS_initial_ply)); | 
 |   } | 
 |  | 
 |   Problem problem; | 
 |  | 
 |   srand(absl::GetFlag(FLAGS_random_seed)); | 
 |   bal_problem.Normalize(); | 
 |   bal_problem.Perturb(absl::GetFlag(FLAGS_rotation_sigma), | 
 |                       absl::GetFlag(FLAGS_translation_sigma), | 
 |                       absl::GetFlag(FLAGS_point_sigma)); | 
 |  | 
 |   BuildProblem(&bal_problem, &problem); | 
 |   Solver::Options options; | 
 |   SetSolverOptionsFromFlags(&bal_problem, &options); | 
 |   options.gradient_tolerance = 1e-16; | 
 |   options.function_tolerance = 1e-16; | 
 |   options.parameter_tolerance = 1e-16; | 
 |   Solver::Summary summary; | 
 |   Solve(options, &problem, &summary); | 
 |   std::cout << summary.FullReport() << "\n"; | 
 |  | 
 |   if (!absl::GetFlag(FLAGS_final_ply).empty()) { | 
 |     bal_problem.WriteToPLYFile(absl::GetFlag(FLAGS_final_ply)); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 | }  // namespace ceres::examples | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   absl::InitializeLog(); | 
 |   absl::ParseCommandLine(argc, argv); | 
 |  | 
 |   if (absl::GetFlag(FLAGS_input).empty()) { | 
 |     LOG(ERROR) << "Usage: bundle_adjuster --input=bal_problem"; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   CHECK(absl::GetFlag(FLAGS_use_quaternions) || | 
 |         !absl::GetFlag(FLAGS_use_manifolds)) | 
 |       << "--use_manifolds can only be used with --use_quaternions."; | 
 |   ceres::examples::SolveProblem(absl::GetFlag(FLAGS_input).c_str()); | 
 |   return 0; | 
 | } |