| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/dense_qr_solver.h" | 
 |  | 
 | #include <cstddef> | 
 | #include "Eigen/Dense" | 
 | #include "ceres/dense_sparse_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/lapack.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | DenseQRSolver::DenseQRSolver(const LinearSolver::Options& options) | 
 |     : options_(options) { | 
 |   work_.resize(1); | 
 | } | 
 |  | 
 | LinearSolver::Summary DenseQRSolver::SolveImpl( | 
 |     DenseSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   if (options_.dense_linear_algebra_library_type == EIGEN) { | 
 |     return SolveUsingEigen(A, b, per_solve_options, x); | 
 |   } else { | 
 |     return SolveUsingLAPACK(A, b, per_solve_options, x); | 
 |   } | 
 | } | 
 |  | 
 | LinearSolver::Summary DenseQRSolver::SolveUsingLAPACK( | 
 |     DenseSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   EventLogger event_logger("DenseQRSolver::Solve"); | 
 |  | 
 |   const int num_rows = A->num_rows(); | 
 |   const int num_cols = A->num_cols(); | 
 |  | 
 |   if (per_solve_options.D != NULL) { | 
 |     // Temporarily append a diagonal block to the A matrix, but undo | 
 |     // it before returning the matrix to the user. | 
 |     A->AppendDiagonal(per_solve_options.D); | 
 |   } | 
 |  | 
 |   // TODO(sameeragarwal): Since we are copying anyways, the diagonal | 
 |   // can be appended to the matrix instead of doing it on A. | 
 |   lhs_ =  A->matrix(); | 
 |  | 
 |   if (per_solve_options.D != NULL) { | 
 |     // Undo the modifications to the matrix A. | 
 |     A->RemoveDiagonal(); | 
 |   } | 
 |  | 
 |   // rhs = [b;0] to account for the additional rows in the lhs. | 
 |   if (rhs_.rows() != lhs_.rows()) { | 
 |     rhs_.resize(lhs_.rows()); | 
 |   } | 
 |   rhs_.setZero(); | 
 |   rhs_.head(num_rows) = ConstVectorRef(b, num_rows); | 
 |  | 
 |   if (work_.rows() == 1) { | 
 |     const int work_size = | 
 |         LAPACK::EstimateWorkSizeForQR(lhs_.rows(), lhs_.cols()); | 
 |     VLOG(3) << "Working memory for Dense QR factorization: " | 
 |             << work_size * sizeof(double); | 
 |     work_.resize(work_size); | 
 |   } | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = LAPACK::SolveInPlaceUsingQR(lhs_.rows(), | 
 |                                                          lhs_.cols(), | 
 |                                                          lhs_.data(), | 
 |                                                          work_.rows(), | 
 |                                                          work_.data(), | 
 |                                                          rhs_.data(), | 
 |                                                          &summary.message); | 
 |   event_logger.AddEvent("Solve"); | 
 |   if (summary.termination_type == LINEAR_SOLVER_SUCCESS) { | 
 |     VectorRef(x, num_cols) = rhs_.head(num_cols); | 
 |   } | 
 |  | 
 |   event_logger.AddEvent("TearDown"); | 
 |   return summary; | 
 | } | 
 |  | 
 | LinearSolver::Summary DenseQRSolver::SolveUsingEigen( | 
 |     DenseSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   EventLogger event_logger("DenseQRSolver::Solve"); | 
 |  | 
 |   const int num_rows = A->num_rows(); | 
 |   const int num_cols = A->num_cols(); | 
 |  | 
 |   if (per_solve_options.D != NULL) { | 
 |     // Temporarily append a diagonal block to the A matrix, but undo | 
 |     // it before returning the matrix to the user. | 
 |     A->AppendDiagonal(per_solve_options.D); | 
 |   } | 
 |  | 
 |   // rhs = [b;0] to account for the additional rows in the lhs. | 
 |   const int augmented_num_rows = | 
 |       num_rows + ((per_solve_options.D != NULL) ? num_cols : 0); | 
 |   if (rhs_.rows() != augmented_num_rows) { | 
 |     rhs_.resize(augmented_num_rows); | 
 |     rhs_.setZero(); | 
 |   } | 
 |   rhs_.head(num_rows) = ConstVectorRef(b, num_rows); | 
 |   event_logger.AddEvent("Setup"); | 
 |  | 
 |   // Solve the system. | 
 |   VectorRef(x, num_cols) = A->matrix().householderQr().solve(rhs_); | 
 |   event_logger.AddEvent("Solve"); | 
 |  | 
 |   if (per_solve_options.D != NULL) { | 
 |     // Undo the modifications to the matrix A. | 
 |     A->RemoveDiagonal(); | 
 |   } | 
 |  | 
 |   // We always succeed, since the QR solver returns the best solution | 
 |   // it can. It is the job of the caller to determine if the solution | 
 |   // is good enough or not. | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   event_logger.AddEvent("TearDown"); | 
 |   return summary; | 
 | } | 
 |  | 
 | }   // namespace internal | 
 | }   // namespace ceres |