| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // Preconditioners for linear systems that arise in Structure from |
| // Motion problems. VisibilityBasedPreconditioner implements three |
| // preconditioners: |
| // |
| // SCHUR_JACOBI |
| // CLUSTER_JACOBI |
| // CLUSTER_TRIDIAGONAL |
| // |
| // Detailed descriptions of these preconditions beyond what is |
| // documented here can be found in |
| // |
| // Bundle Adjustment in the Large |
| // S. Agarwal, N. Snavely, S. Seitz & R. Szeliski, ECCV 2010 |
| // http://www.cs.washington.edu/homes/sagarwal/bal.pdf |
| // |
| // Visibility Based Preconditioning for Bundle Adjustment |
| // A. Kushal & S. Agarwal, submitted to CVPR 2012 |
| // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf |
| // |
| // The three preconditioners share enough code that its most efficient |
| // to implement them as part of the same code base. |
| |
| #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |
| #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |
| |
| #include <set> |
| #include <vector> |
| #include <utility> |
| #include "ceres/collections_port.h" |
| #include "ceres/graph.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/linear_operator.h" |
| #include "ceres/suitesparse.h" |
| #include "ceres/internal/macros.h" |
| #include "ceres/internal/scoped_ptr.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class BlockRandomAccessSparseMatrix; |
| class BlockSparseMatrixBase; |
| class CompressedRowBlockStructure; |
| class SchurEliminatorBase; |
| |
| // This class implements three preconditioners for Structure from |
| // Motion/Bundle Adjustment problems. The name |
| // VisibilityBasedPreconditioner comes from the fact that the sparsity |
| // structure of the preconditioner matrix is determined by analyzing |
| // the visibility structure of the scene, i.e. which cameras see which |
| // points. |
| // |
| // Strictly speaking, SCHUR_JACOBI is not a visibility based |
| // preconditioner but it is an extreme case of CLUSTER_JACOBI, where |
| // every cluster contains exactly one camera block. Treating it as a |
| // special case of CLUSTER_JACOBI makes it easy to implement as part |
| // of the same code base with no significant loss of performance. |
| // |
| // In the following, we will only discuss CLUSTER_JACOBI and |
| // CLUSTER_TRIDIAGONAL. |
| // |
| // The key idea of visibility based preconditioning is to identify |
| // cameras that we expect have strong interactions, and then using the |
| // entries in the Schur complement matrix corresponding to these |
| // camera pairs as an approximation to the full Schur complement. |
| // |
| // CLUSTER_JACOBI identifies these camera pairs by clustering cameras, |
| // and considering all non-zero camera pairs within each cluster. The |
| // clustering in the current implementation is done using the |
| // Canonical Views algorithm of Simon et al. (see |
| // canonical_views_clustering.h). For the purposes of clustering, the |
| // similarity or the degree of interaction between a pair of cameras |
| // is measured by counting the number of points visible in both the |
| // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we |
| // were to permute the parameter blocks such that all the cameras in |
| // the same cluster occur contiguously, the preconditioner matrix will |
| // be a block diagonal matrix with blocks corresponding to the |
| // clusters. Thus in analogy with the Jacobi preconditioner we refer |
| // to this as the CLUSTER_JACOBI preconditioner. |
| // |
| // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI |
| // preconditioner by considering the interaction between clusters and |
| // identifying strong interactions between cluster pairs. This is done |
| // by constructing a weighted graph on the clusters, with the weight |
| // on the edges connecting two clusters proportional to the number of |
| // 3D points visible to cameras in both the clusters. A degree-2 |
| // maximum spanning forest is identified in this graph and the camera |
| // pairs contained in the edges of this forest are added to the |
| // preconditioner. The detailed reasoning for this construction is |
| // explained in the paper mentioned above. |
| // |
| // Degree-2 spanning trees and forests have the property that they |
| // correspond to tri-diagonal matrices. Thus there exist a permutation |
| // of the camera blocks under which the CLUSTER_TRIDIAGONAL |
| // preconditioner matrix is a block tridiagonal matrix, and thus the |
| // name for the preconditioner. |
| // |
| // Thread Safety: This class is NOT thread safe. |
| // |
| // Example usage: |
| // |
| // LinearSolver::Options options; |
| // options.preconditioner_type = CLUSTER_JACOBI; |
| // options.num_eliminate_blocks = num_points; |
| // VisibilityBasedPreconditioner preconditioner( |
| // *A.block_structure(), options); |
| // preconditioner.Update(A, NULL); |
| // preconditioner.RightMultiply(x, y); |
| // |
| |
| #ifndef CERES_NO_SUITESPARSE |
| class VisibilityBasedPreconditioner : public LinearOperator { |
| public: |
| // Initialize the symbolic structure of the preconditioner. bs is |
| // the block structure of the linear system to be solved. It is used |
| // to determine the sparsity structure of the preconditioner matrix. |
| // |
| // It has the same structural requirement as other Schur complement |
| // based solvers. Please see schur_eliminator.h for more details. |
| // |
| // LinearSolver::Options::num_eliminate_blocks should be set to the |
| // number of e_blocks in the block structure. |
| // |
| // TODO(sameeragarwal): The use of LinearSolver::Options should |
| // ultimately be replaced with Preconditioner::Options and some sort |
| // of preconditioner factory along the lines of |
| // LinearSolver::CreateLinearSolver. I will wait to do this till I |
| // create a general purpose block Jacobi preconditioner for general |
| // sparse problems along with a CGLS solver. |
| VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs, |
| const LinearSolver::Options& options); |
| virtual ~VisibilityBasedPreconditioner(); |
| |
| // Update the numerical value of the preconditioner for the linear |
| // system: |
| // |
| // | A | x = |b| |
| // |diag(D)| |0| |
| // |
| // for some vector b. It is important that the matrix A have the |
| // same block structure as the one used to construct this object. |
| // |
| // D can be NULL, in which case its interpreted as a diagonal matrix |
| // of size zero. |
| bool Update(const BlockSparseMatrixBase& A, const double* D); |
| |
| |
| // LinearOperator interface. Since the operator is symmetric, |
| // LeftMultiply and num_cols are just calls to RightMultiply and |
| // num_rows respectively. Update() must be called before |
| // RightMultiply can be called. |
| virtual void RightMultiply(const double* x, double* y) const; |
| virtual void LeftMultiply(const double* x, double* y) const { |
| RightMultiply(x, y); |
| } |
| virtual int num_rows() const; |
| virtual int num_cols() const { return num_rows(); } |
| |
| friend class VisibilityBasedPreconditionerTest; |
| private: |
| void ComputeSchurJacobiSparsity(const CompressedRowBlockStructure& bs); |
| void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs); |
| void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs); |
| void InitStorage(const CompressedRowBlockStructure& bs); |
| void InitEliminator(const CompressedRowBlockStructure& bs); |
| bool Factorize(); |
| void ScaleOffDiagonalCells(); |
| |
| void ClusterCameras(const vector< set<int> >& visibility); |
| void FlattenMembershipMap(const HashMap<int, int>& membership_map, |
| vector<int>* membership_vector) const; |
| void ComputeClusterVisibility(const vector<set<int> >& visibility, |
| vector<set<int> >* cluster_visibility) const; |
| Graph<int>* CreateClusterGraph(const vector<set<int> >& visibility) const; |
| void ForestToClusterPairs(const Graph<int>& forest, |
| HashSet<pair<int, int> >* cluster_pairs) const; |
| void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs); |
| bool IsBlockPairInPreconditioner(int block1, int block2) const; |
| bool IsBlockPairOffDiagonal(int block1, int block2) const; |
| |
| LinearSolver::Options options_; |
| |
| // Number of parameter blocks in the schur complement. |
| int num_blocks_; |
| int num_clusters_; |
| |
| // Sizes of the blocks in the schur complement. |
| vector<int> block_size_; |
| |
| // Mapping from cameras to clusters. |
| vector<int> cluster_membership_; |
| |
| // Non-zero camera pairs from the schur complement matrix that are |
| // present in the preconditioner, sorted by row (first element of |
| // each pair), then column (second). |
| set<pair<int, int> > block_pairs_; |
| |
| // Set of cluster pairs (including self pairs (i,i)) in the |
| // preconditioner. |
| HashSet<pair<int, int> > cluster_pairs_; |
| scoped_ptr<SchurEliminatorBase> eliminator_; |
| |
| // Preconditioner matrix. |
| scoped_ptr<BlockRandomAccessSparseMatrix> m_; |
| |
| // RightMultiply is a const method for LinearOperators. It is |
| // implemented using CHOLMOD's sparse triangular matrix solve |
| // function. This however requires non-const access to the |
| // SuiteSparse context object, even though it does not result in any |
| // of the state of the preconditioner being modified. |
| SuiteSparse ss_; |
| |
| // Symbolic and numeric factorization of the preconditioner. |
| cholmod_factor* factor_; |
| |
| // Temporary vector used by RightMultiply. |
| cholmod_dense* tmp_rhs_; |
| DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner); |
| }; |
| #else // SuiteSparse |
| // If SuiteSparse is not compiled in, the preconditioner is not |
| // available. |
| class VisibilityBasedPreconditioner : public LinearOperator { |
| public: |
| VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs, |
| const LinearSolver::Options& options) { |
| LOG(FATAL) << "Visibility based preconditioning is not available. Please " |
| "build Ceres with SuiteSparse."; |
| } |
| virtual ~VisibilityBasedPreconditioner() {} |
| virtual void RightMultiply(const double* x, double* y) const {} |
| virtual void LeftMultiply(const double* x, double* y) const {} |
| virtual int num_rows() const { return -1; } |
| virtual int num_cols() const { return -1; } |
| bool Update(const BlockSparseMatrixBase& A, const double* D) { |
| return false; |
| } |
| }; |
| #endif // CERES_NO_SUITESPARSE |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |