blob: 42d7450cec11b4da578d6449f04a6f51eea746e6 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2014 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// Bounds constrained test problems from the paper
//
// Testing Unconstrained Optimization Software
// Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom
// ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981
//
// A subset of these problems were augmented with bounds and used for
// testing bounds constrained optimization algorithms by
//
// A Trust Region Approach to Linearly Constrained Optimization
// David M. Gay
// Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105
// Lecture Notes in Mathematics 1066, Springer Verlag, 1984.
//
// The latter paper is behind a paywall. We obtained the bounds on the
// variables and the function values at the global minimums from
//
// http://www.mat.univie.ac.at/~neum/glopt/bounds.html
//
// A problem is considered solved if of the log relative error of its
// objective function is at least 5.
#include <cmath>
#include <iostream>
#include "ceres/ceres.h"
namespace ceres {
namespace examples {
#define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals) \
struct name { \
static const int kNumParameters = num_parameters; \
static const double initial_x[kNumParameters]; \
static const double lower_bounds[kNumParameters]; \
static const double upper_bounds[kNumParameters]; \
static const double constrained_optimal_cost; \
static const double unconstrained_optimal_cost; \
static CostFunction* Create() { \
return new AutoDiffCostFunction<name, \
num_residuals, \
num_parameters>(new name); \
} \
template <typename T> \
bool operator()(const T* const x, T* residual) const {
#define END_MGH_PROBLEM return true; } };
BEGIN_MGH_PROBLEM(TestProblem3, 2, 2)
const T x1 = x[0];
const T x2 = x[1];
residual[0] = T(10000.0) * x1 * x2 - T(1.0);
residual[1] = exp(-x1) + exp(-x2) - T(1.0001);
END_MGH_PROBLEM;
const double TestProblem3::initial_x[] = {0.0, 1.0};
const double TestProblem3::lower_bounds[] = {0.0, 1.0};
const double TestProblem3::upper_bounds[] = {1.0, 9.0};
const double TestProblem3::constrained_optimal_cost = 0.15125900e-9;
const double TestProblem3::unconstrained_optimal_cost = 0.0;
BEGIN_MGH_PROBLEM(TestProblem4, 2, 3)
const T x1 = x[0];
const T x2 = x[1];
residual[0] = x1 - T(1000000.0);
residual[1] = x2 - T(0.000002);
residual[2] = x1 * x2 - T(2.0);
END_MGH_PROBLEM;
const double TestProblem4::initial_x[] = {1.0, 1.0};
const double TestProblem4::lower_bounds[] = {0.0, 0.00003};
const double TestProblem4::upper_bounds[] = {1000000.0, 100.0};
const double TestProblem4::constrained_optimal_cost = 0.78400000e3;
const double TestProblem4::unconstrained_optimal_cost = 0.0;
BEGIN_MGH_PROBLEM(TestProblem5, 2, 3)
const T x1 = x[0];
const T x2 = x[1];
residual[0] = T(1.5) - x1 * (T(1.0) - x2);
residual[1] = T(2.25) - x1 * (T(1.0) - x2 * x2);
residual[2] = T(2.625) - x1 * (T(1.0) - x2 * x2 * x2);
END_MGH_PROBLEM;
const double TestProblem5::initial_x[] = {1.0, 1.0};
const double TestProblem5::lower_bounds[] = {0.6, 0.5};
const double TestProblem5::upper_bounds[] = {10.0, 100.0};
const double TestProblem5::constrained_optimal_cost = 0.0;
const double TestProblem5::unconstrained_optimal_cost = 0.0;
BEGIN_MGH_PROBLEM(TestProblem7, 3, 3)
const T x1 = x[0];
const T x2 = x[1];
const T x3 = x[2];
const T theta = T(0.5 / M_PI) * atan(x2 / x1) + (x1 > 0.0 ? T(0.0) : T(0.5));
residual[0] = T(10.0) * (x3 - T(10.0) * theta);
residual[1] = T(10.0) * (sqrt(x1 * x1 + x2 * x2) - T(1.0));
residual[2] = x3;
END_MGH_PROBLEM;
const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0};
const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0};
const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0};
const double TestProblem7::constrained_optimal_cost = 0.99042212;
const double TestProblem7::unconstrained_optimal_cost = 0.0;
BEGIN_MGH_PROBLEM(TestProblem9, 3, 15)
const T x1 = x[0];
const T x2 = x[1];
const T x3 = x[2];
double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,
0.3989,
0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009};
for (int i = 0; i < 15; ++i) {
const T t_i = T((8.0 - i - 1.0) / 2.0);
const T y_i = T(y[i]);
residual[i] = x1 * exp( -x2 * (t_i - x3) * (t_i - x3) / T(2.0)) - y_i;
}
END_MGH_PROBLEM;
const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0};
const double TestProblem9::lower_bounds[] = {0.398, 1.0 ,-0.5};
const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1};
const double TestProblem9::constrained_optimal_cost = 0.11279300e-7;
const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7;
#undef BEGIN_MGH_PROBLEM
#undef END_MGH_PROBLEM
template<typename TestProblem> string ConstrainedSolve() {
double x[TestProblem::kNumParameters];
std::copy(TestProblem::initial_x,
TestProblem::initial_x + TestProblem::kNumParameters,
x);
Problem problem;
problem.AddResidualBlock(TestProblem::Create(), NULL, x);
for (int i = 0; i < TestProblem::kNumParameters; ++i) {
problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]);
problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]);
}
Solver::Options options;
options.parameter_tolerance = 1e-18;
options.function_tolerance = 1e-18;
options.gradient_tolerance = 1e-18;
options.max_num_iterations = 1000;
options.linear_solver_type = DENSE_QR;
Solver::Summary summary;
Solve(options, &problem, &summary);
const double kMinLogRelativeError = 5.0;
const double log_relative_error = -std::log10(
std::abs(2.0 * summary.final_cost - TestProblem::constrained_optimal_cost) /
(TestProblem::constrained_optimal_cost > 0.0
? TestProblem::constrained_optimal_cost
: 1.0));
return (log_relative_error >= kMinLogRelativeError
? "Success\n"
: "Failure\n");
}
template<typename TestProblem> string UnconstrainedSolve() {
double x[TestProblem::kNumParameters];
std::copy(TestProblem::initial_x,
TestProblem::initial_x + TestProblem::kNumParameters,
x);
Problem problem;
problem.AddResidualBlock(TestProblem::Create(), NULL, x);
Solver::Options options;
options.parameter_tolerance = 1e-18;
options.function_tolerance = 1e-18;
options.gradient_tolerance = 1e-18;
options.max_num_iterations = 1000;
options.linear_solver_type = DENSE_QR;
Solver::Summary summary;
Solve(options, &problem, &summary);
const double kMinLogRelativeError = 5.0;
const double log_relative_error = -std::log10(
std::abs(2.0 * summary.final_cost - TestProblem::unconstrained_optimal_cost) /
(TestProblem::unconstrained_optimal_cost > 0.0
? TestProblem::unconstrained_optimal_cost
: 1.0));
return (log_relative_error >= kMinLogRelativeError
? "Success\n"
: "Failure\n");
}
} // namespace examples
} // namespace ceres
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
using ceres::examples::ConstrainedSolve;
using ceres::examples::UnconstrainedSolve;
std::cout << "Unconstrained Problems\n";
std::cout << "Test problem 3 : "
<< UnconstrainedSolve<ceres::examples::TestProblem3>();
std::cout << "Test problem 4 : "
<< UnconstrainedSolve<ceres::examples::TestProblem4>();
std::cout << "Test problem 5 : "
<< UnconstrainedSolve<ceres::examples::TestProblem5>();
std::cout << "Test problem 7 : "
<< UnconstrainedSolve<ceres::examples::TestProblem7>();
std::cout << "Test problem 9 : "
<< UnconstrainedSolve<ceres::examples::TestProblem9>();
std::cout << "Constrained Problems\n";
std::cout << "Test problem 3 : "
<< ConstrainedSolve<ceres::examples::TestProblem3>();
std::cout << "Test problem 4 : "
<< ConstrainedSolve<ceres::examples::TestProblem4>();
std::cout << "Test problem 5 : "
<< ConstrainedSolve<ceres::examples::TestProblem5>();
std::cout << "Test problem 7 : "
<< ConstrainedSolve<ceres::examples::TestProblem7>();
std::cout << "Test problem 9 : "
<< ConstrainedSolve<ceres::examples::TestProblem9>();
return 0;
}