|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2017 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: fredp@google.com (Fred Pighin) | 
|  | // | 
|  | // TODO(sameeragarwal): More comprehensive testing with larger and | 
|  | // more badly conditioned problem. | 
|  |  | 
|  | #include "ceres/conjugate_gradients_solver.h" | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/preconditioner.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | TEST(ConjugateGradientTest, Solves3x3IdentitySystem) { | 
|  | double diagonal[] = {1.0, 1.0, 1.0}; | 
|  | std::unique_ptr<TripletSparseMatrix> A( | 
|  | TripletSparseMatrix::CreateSparseDiagonalMatrix(diagonal, 3)); | 
|  | Vector b(3); | 
|  | Vector x(3); | 
|  |  | 
|  | b(0) = 1.0; | 
|  | b(1) = 2.0; | 
|  | b(2) = 3.0; | 
|  |  | 
|  | x(0) = 1; | 
|  | x(1) = 1; | 
|  | x(2) = 1; | 
|  |  | 
|  | ConjugateGradientsSolverOptions cg_options; | 
|  | cg_options.min_num_iterations = 1; | 
|  | cg_options.max_num_iterations = 10; | 
|  | cg_options.residual_reset_period = 20; | 
|  | cg_options.q_tolerance = 0.0; | 
|  | cg_options.r_tolerance = 1e-9; | 
|  |  | 
|  | Vector scratch[4]; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | scratch[i] = Vector::Zero(A->num_cols()); | 
|  | } | 
|  |  | 
|  | IdentityPreconditioner identity(A->num_cols()); | 
|  | LinearOperatorAdapter lhs(*A); | 
|  | LinearOperatorAdapter preconditioner(identity); | 
|  | Vector* scratch_array[4] = { | 
|  | &scratch[0], &scratch[1], &scratch[2], &scratch[3]}; | 
|  | auto summary = ConjugateGradientsSolver( | 
|  | cg_options, lhs, b, preconditioner, scratch_array, x); | 
|  |  | 
|  | EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
|  | ASSERT_EQ(summary.num_iterations, 1); | 
|  |  | 
|  | ASSERT_DOUBLE_EQ(1, x(0)); | 
|  | ASSERT_DOUBLE_EQ(2, x(1)); | 
|  | ASSERT_DOUBLE_EQ(3, x(2)); | 
|  | } | 
|  |  | 
|  | TEST(ConjuateGradientTest, Solves3x3SymmetricSystem) { | 
|  | std::unique_ptr<TripletSparseMatrix> A(new TripletSparseMatrix(3, 3, 9)); | 
|  | Vector b(3); | 
|  | Vector x(3); | 
|  |  | 
|  | //      | 2  -1  0| | 
|  | //  A = |-1   2 -1| is symmetric positive definite. | 
|  | //      | 0  -1  2| | 
|  | int* Ai = A->mutable_rows(); | 
|  | int* Aj = A->mutable_cols(); | 
|  | double* Ax = A->mutable_values(); | 
|  | int counter = 0; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | Ai[counter] = i; | 
|  | Aj[counter] = j; | 
|  | ++counter; | 
|  | } | 
|  | } | 
|  | Ax[0] = 2.; | 
|  | Ax[1] = -1.; | 
|  | Ax[2] = 0; | 
|  | Ax[3] = -1.; | 
|  | Ax[4] = 2; | 
|  | Ax[5] = -1; | 
|  | Ax[6] = 0; | 
|  | Ax[7] = -1; | 
|  | Ax[8] = 2; | 
|  | A->set_num_nonzeros(9); | 
|  |  | 
|  | b(0) = -1; | 
|  | b(1) = 0; | 
|  | b(2) = 3; | 
|  |  | 
|  | x(0) = 1; | 
|  | x(1) = 1; | 
|  | x(2) = 1; | 
|  |  | 
|  | ConjugateGradientsSolverOptions cg_options; | 
|  | cg_options.min_num_iterations = 1; | 
|  | cg_options.max_num_iterations = 10; | 
|  | cg_options.residual_reset_period = 20; | 
|  | cg_options.q_tolerance = 0.0; | 
|  | cg_options.r_tolerance = 1e-9; | 
|  |  | 
|  | Vector scratch[4]; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | scratch[i] = Vector::Zero(A->num_cols()); | 
|  | } | 
|  | Vector* scratch_array[4] = { | 
|  | &scratch[0], &scratch[1], &scratch[2], &scratch[3]}; | 
|  | IdentityPreconditioner identity(A->num_cols()); | 
|  | LinearOperatorAdapter lhs(*A); | 
|  | LinearOperatorAdapter preconditioner(identity); | 
|  |  | 
|  | auto summary = ConjugateGradientsSolver( | 
|  | cg_options, lhs, b, preconditioner, scratch_array, x); | 
|  |  | 
|  | EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
|  |  | 
|  | ASSERT_DOUBLE_EQ(0, x(0)); | 
|  | ASSERT_DOUBLE_EQ(1, x(1)); | 
|  | ASSERT_DOUBLE_EQ(2, x(2)); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |