|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/coordinate_descent_minimizer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <iterator> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/minimizer.h" | 
|  | #include "ceres/parallel_for.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/parameter_block_ordering.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/residual_block.h" | 
|  | #include "ceres/solver.h" | 
|  | #include "ceres/trust_region_minimizer.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | using std::map; | 
|  | using std::max; | 
|  | using std::min; | 
|  | using std::set; | 
|  | using std::string; | 
|  | using std::vector; | 
|  |  | 
|  | CoordinateDescentMinimizer::CoordinateDescentMinimizer(ContextImpl* context) | 
|  | : context_(context) { | 
|  | CHECK(context_ != nullptr); | 
|  | } | 
|  |  | 
|  | CoordinateDescentMinimizer::~CoordinateDescentMinimizer() = default; | 
|  |  | 
|  | bool CoordinateDescentMinimizer::Init( | 
|  | const Program& program, | 
|  | const ProblemImpl::ParameterMap& parameter_map, | 
|  | const ParameterBlockOrdering& ordering, | 
|  | string* error) { | 
|  | parameter_blocks_.clear(); | 
|  | independent_set_offsets_.clear(); | 
|  | independent_set_offsets_.push_back(0); | 
|  |  | 
|  | // Serialize the OrderedGroups into a vector of parameter block | 
|  | // offsets for parallel access. | 
|  | map<ParameterBlock*, int> parameter_block_index; | 
|  | map<int, set<double*>> group_to_elements = ordering.group_to_elements(); | 
|  | for (const auto& g_t_e : group_to_elements) { | 
|  | const auto& elements = g_t_e.second; | 
|  | for (double* parameter_block : elements) { | 
|  | parameter_blocks_.push_back(parameter_map.find(parameter_block)->second); | 
|  | parameter_block_index[parameter_blocks_.back()] = | 
|  | parameter_blocks_.size() - 1; | 
|  | } | 
|  | independent_set_offsets_.push_back(independent_set_offsets_.back() + | 
|  | elements.size()); | 
|  | } | 
|  |  | 
|  | // The ordering does not have to contain all parameter blocks, so | 
|  | // assign zero offsets/empty independent sets to these parameter | 
|  | // blocks. | 
|  | const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks(); | 
|  | for (auto* parameter_block : parameter_blocks) { | 
|  | if (!ordering.IsMember(parameter_block->mutable_user_state())) { | 
|  | parameter_blocks_.push_back(parameter_block); | 
|  | independent_set_offsets_.push_back(independent_set_offsets_.back()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the set of residual blocks that depend on each parameter | 
|  | // block. | 
|  | residual_blocks_.resize(parameter_block_index.size()); | 
|  | const vector<ResidualBlock*>& residual_blocks = program.residual_blocks(); | 
|  | for (auto* residual_block : residual_blocks) { | 
|  | const int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
|  | for (int j = 0; j < num_parameter_blocks; ++j) { | 
|  | ParameterBlock* parameter_block = residual_block->parameter_blocks()[j]; | 
|  | const auto it = parameter_block_index.find(parameter_block); | 
|  | if (it != parameter_block_index.end()) { | 
|  | residual_blocks_[it->second].push_back(residual_block); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | evaluator_options_.linear_solver_type = DENSE_QR; | 
|  | evaluator_options_.num_eliminate_blocks = 0; | 
|  | evaluator_options_.num_threads = 1; | 
|  | evaluator_options_.context = context_; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CoordinateDescentMinimizer::Minimize(const Minimizer::Options& options, | 
|  | double* parameters, | 
|  | Solver::Summary* summary) { | 
|  | // Set the state and mark all parameter blocks constant. | 
|  | for (auto* parameter_block : parameter_blocks_) { | 
|  | parameter_block->SetState(parameters + parameter_block->state_offset()); | 
|  | parameter_block->SetConstant(); | 
|  | } | 
|  |  | 
|  | std::vector<std::unique_ptr<LinearSolver>> linear_solvers( | 
|  | options.num_threads); | 
|  |  | 
|  | LinearSolver::Options linear_solver_options; | 
|  | linear_solver_options.type = DENSE_QR; | 
|  | linear_solver_options.context = context_; | 
|  |  | 
|  | for (int i = 0; i < options.num_threads; ++i) { | 
|  | linear_solvers[i] = LinearSolver::Create(linear_solver_options); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < independent_set_offsets_.size() - 1; ++i) { | 
|  | const int num_problems = | 
|  | independent_set_offsets_[i + 1] - independent_set_offsets_[i]; | 
|  | // Avoid parallelization overhead call if the set is empty. | 
|  | if (num_problems == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const int num_inner_iteration_threads = | 
|  | min(options.num_threads, num_problems); | 
|  | evaluator_options_.num_threads = | 
|  | max(1, options.num_threads / num_inner_iteration_threads); | 
|  |  | 
|  | // The parameter blocks in each independent set can be optimized | 
|  | // in parallel, since they do not co-occur in any residual block. | 
|  | ParallelFor( | 
|  | context_, | 
|  | independent_set_offsets_[i], | 
|  | independent_set_offsets_[i + 1], | 
|  | num_inner_iteration_threads, | 
|  | [&](int thread_id, int j) { | 
|  | ParameterBlock* parameter_block = parameter_blocks_[j]; | 
|  | const int old_index = parameter_block->index(); | 
|  | const int old_delta_offset = parameter_block->delta_offset(); | 
|  | parameter_block->SetVarying(); | 
|  | parameter_block->set_index(0); | 
|  | parameter_block->set_delta_offset(0); | 
|  |  | 
|  | Program inner_program; | 
|  | inner_program.mutable_parameter_blocks()->push_back(parameter_block); | 
|  | *inner_program.mutable_residual_blocks() = residual_blocks_[j]; | 
|  |  | 
|  | // TODO(sameeragarwal): Better error handling. Right now we | 
|  | // assume that this is not going to lead to problems of any | 
|  | // sort. Basically we should be checking for numerical failure | 
|  | // of some sort. | 
|  | // | 
|  | // On the other hand, if the optimization is a failure, that in | 
|  | // some ways is fine, since it won't change the parameters and | 
|  | // we are fine. | 
|  | Solver::Summary inner_summary; | 
|  | Solve(&inner_program, | 
|  | linear_solvers[thread_id].get(), | 
|  | parameters + parameter_block->state_offset(), | 
|  | &inner_summary); | 
|  |  | 
|  | parameter_block->set_index(old_index); | 
|  | parameter_block->set_delta_offset(old_delta_offset); | 
|  | parameter_block->SetState(parameters + | 
|  | parameter_block->state_offset()); | 
|  | parameter_block->SetConstant(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | for (auto* parameter_block : parameter_blocks_) { | 
|  | parameter_block->SetVarying(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Solve the optimization problem for one parameter block. | 
|  | void CoordinateDescentMinimizer::Solve(Program* program, | 
|  | LinearSolver* linear_solver, | 
|  | double* parameter, | 
|  | Solver::Summary* summary) { | 
|  | *summary = Solver::Summary(); | 
|  | summary->initial_cost = 0.0; | 
|  | summary->fixed_cost = 0.0; | 
|  | summary->final_cost = 0.0; | 
|  | string error; | 
|  |  | 
|  | Minimizer::Options minimizer_options; | 
|  | minimizer_options.evaluator = | 
|  | Evaluator::Create(evaluator_options_, program, &error); | 
|  | CHECK(minimizer_options.evaluator != nullptr); | 
|  | minimizer_options.jacobian = minimizer_options.evaluator->CreateJacobian(); | 
|  | CHECK(minimizer_options.jacobian != nullptr); | 
|  |  | 
|  | TrustRegionStrategy::Options trs_options; | 
|  | trs_options.linear_solver = linear_solver; | 
|  | minimizer_options.trust_region_strategy = | 
|  | TrustRegionStrategy::Create(trs_options); | 
|  | CHECK(minimizer_options.trust_region_strategy != nullptr); | 
|  | minimizer_options.is_silent = true; | 
|  |  | 
|  | TrustRegionMinimizer minimizer; | 
|  | minimizer.Minimize(minimizer_options, parameter, summary); | 
|  | } | 
|  |  | 
|  | bool CoordinateDescentMinimizer::IsOrderingValid( | 
|  | const Program& program, | 
|  | const ParameterBlockOrdering& ordering, | 
|  | string* message) { | 
|  | const map<int, set<double*>>& group_to_elements = | 
|  | ordering.group_to_elements(); | 
|  |  | 
|  | // Verify that each group is an independent set | 
|  | for (const auto& g_t_e : group_to_elements) { | 
|  | if (!program.IsParameterBlockSetIndependent(g_t_e.second)) { | 
|  | *message = StringPrintf( | 
|  | "The user-provided parameter_blocks_for_inner_iterations does not " | 
|  | "form an independent set. Group Id: %d", | 
|  | g_t_e.first); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Find a recursive decomposition of the Hessian matrix as a set | 
|  | // of independent sets of decreasing size and invert it. This | 
|  | // seems to work better in practice, i.e., Cameras before | 
|  | // points. | 
|  | std::shared_ptr<ParameterBlockOrdering> | 
|  | CoordinateDescentMinimizer::CreateOrdering(const Program& program) { | 
|  | auto ordering = std::make_shared<ParameterBlockOrdering>(); | 
|  | ComputeRecursiveIndependentSetOrdering(program, ordering.get()); | 
|  | ordering->Reverse(); | 
|  | return ordering; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |