|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/dense_qr.h" | 
|  |  | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | using Param = DenseLinearAlgebraLibraryType; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | std::string ParamInfoToString(testing::TestParamInfo<Param> info) { | 
|  | return DenseLinearAlgebraLibraryTypeToString(info.param); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | class DenseQRTest : public ::testing::TestWithParam<Param> {}; | 
|  |  | 
|  | TEST_P(DenseQRTest, FactorAndSolve) { | 
|  | // TODO(sameeragarwal): Convert these tests into type parameterized tests so | 
|  | // that we can test the single and double precision solvers. | 
|  |  | 
|  | using Scalar = double; | 
|  | using MatrixType = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>; | 
|  | using VectorType = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>; | 
|  |  | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | #ifndef CERES_NO_CUDA | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | CHECK(context.InitCuda(&error)) << error; | 
|  | #endif  // CERES_NO_CUDA | 
|  | options.dense_linear_algebra_library_type = GetParam(); | 
|  | const double kEpsilon = std::numeric_limits<double>::epsilon() * 1.5e4; | 
|  | std::unique_ptr<DenseQR> dense_qr = DenseQR::Create(options); | 
|  |  | 
|  | const int kNumTrials = 10; | 
|  | const int kMinNumCols = 1; | 
|  | const int kMaxNumCols = 10; | 
|  | const int kMinRowsFactor = 1; | 
|  | const int kMaxRowsFactor = 3; | 
|  | for (int num_cols = kMinNumCols; num_cols < kMaxNumCols; ++num_cols) { | 
|  | for (int num_rows = kMinRowsFactor * num_cols; | 
|  | num_rows < kMaxRowsFactor * num_cols; | 
|  | ++num_rows) { | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | MatrixType lhs = MatrixType::Random(num_rows, num_cols); | 
|  | Vector x = VectorType::Random(num_cols); | 
|  | Vector rhs = lhs * x; | 
|  | Vector actual = Vector::Random(num_cols); | 
|  | LinearSolver::Summary summary; | 
|  | summary.termination_type = dense_qr->FactorAndSolve(num_rows, | 
|  | num_cols, | 
|  | lhs.data(), | 
|  | rhs.data(), | 
|  | actual.data(), | 
|  | &summary.message); | 
|  | ASSERT_EQ(summary.termination_type, | 
|  | LinearSolverTerminationType::SUCCESS); | 
|  | ASSERT_NEAR((x - actual).norm() / x.norm(), 0.0, kEpsilon) | 
|  | << "\nexpected: " << x.transpose() | 
|  | << "\nactual  : " << actual.transpose(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // NOTE: preprocessor directives in a macro are not standard conforming | 
|  | decltype(auto) MakeValues() { | 
|  | return ::testing::Values(EIGEN | 
|  | #ifndef CERES_NO_LAPACK | 
|  | , | 
|  | LAPACK | 
|  | #endif | 
|  | #ifndef CERES_NO_CUDA | 
|  | , | 
|  | CUDA | 
|  | #endif | 
|  | ); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(_, DenseQRTest, MakeValues(), ParamInfoToString); | 
|  |  | 
|  | }  // namespace ceres::internal |