| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2016 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: wjr@google.com (William Rucklidge), | 
 | //          keir@google.com (Keir Mierle), | 
 | //          dgossow@google.com (David Gossow) | 
 |  | 
 | #include "ceres/gradient_checker.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <cstdint> | 
 | #include <numeric> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/is_close.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/types.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | using internal::IsClose; | 
 | using internal::StringAppendF; | 
 | using internal::StringPrintf; | 
 | using std::string; | 
 | using std::vector; | 
 |  | 
 | namespace { | 
 | // Evaluate the cost function and transform the returned Jacobians to | 
 | // the tangent space of the respective local parameterizations. | 
 | bool EvaluateCostFunction(const CostFunction* function, | 
 |                           double const* const* parameters, | 
 |                           const std::vector<const Manifold*>& manifolds, | 
 |                           Vector* residuals, | 
 |                           std::vector<Matrix>* jacobians, | 
 |                           std::vector<Matrix>* local_jacobians) { | 
 |   CHECK(residuals != nullptr); | 
 |   CHECK(jacobians != nullptr); | 
 |   CHECK(local_jacobians != nullptr); | 
 |  | 
 |   const vector<int32_t>& block_sizes = function->parameter_block_sizes(); | 
 |   const int num_parameter_blocks = block_sizes.size(); | 
 |  | 
 |   // Allocate Jacobian matrices in tangent space. | 
 |   local_jacobians->resize(num_parameter_blocks); | 
 |   vector<double*> local_jacobian_data(num_parameter_blocks); | 
 |   for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |     int block_size = block_sizes.at(i); | 
 |     if (manifolds.at(i) != nullptr) { | 
 |       block_size = manifolds.at(i)->TangentSize(); | 
 |     } | 
 |     local_jacobians->at(i).resize(function->num_residuals(), block_size); | 
 |     local_jacobians->at(i).setZero(); | 
 |     local_jacobian_data.at(i) = local_jacobians->at(i).data(); | 
 |   } | 
 |  | 
 |   // Allocate Jacobian matrices in ambient space. | 
 |   jacobians->resize(num_parameter_blocks); | 
 |   vector<double*> jacobian_data(num_parameter_blocks); | 
 |   for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |     jacobians->at(i).resize(function->num_residuals(), block_sizes.at(i)); | 
 |     jacobians->at(i).setZero(); | 
 |     jacobian_data.at(i) = jacobians->at(i).data(); | 
 |   } | 
 |  | 
 |   // Compute residuals & jacobians. | 
 |   CHECK_NE(0, function->num_residuals()); | 
 |   residuals->resize(function->num_residuals()); | 
 |   residuals->setZero(); | 
 |   if (!function->Evaluate( | 
 |           parameters, residuals->data(), jacobian_data.data())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Convert Jacobians from ambient to local space. | 
 |   for (size_t i = 0; i < local_jacobians->size(); ++i) { | 
 |     if (manifolds.at(i) == nullptr) { | 
 |       local_jacobians->at(i) = jacobians->at(i); | 
 |     } else { | 
 |       int ambient_size = manifolds.at(i)->AmbientSize(); | 
 |       int tangent_size = manifolds.at(i)->TangentSize(); | 
 |       CHECK_EQ(jacobians->at(i).cols(), ambient_size); | 
 |       Matrix ambient_J_tangent(ambient_size, tangent_size); | 
 |       manifolds.at(i)->PlusJacobian(parameters[i], ambient_J_tangent.data()); | 
 |       local_jacobians->at(i).noalias() = jacobians->at(i) * ambient_J_tangent; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 | }  // namespace | 
 |  | 
 | GradientChecker::GradientChecker(const CostFunction* function, | 
 |                                  const vector<const Manifold*>* manifolds, | 
 |                                  const NumericDiffOptions& options) | 
 |     : function_(function) { | 
 |   CHECK(function != nullptr); | 
 |   if (manifolds != nullptr) { | 
 |     manifolds_ = *manifolds; | 
 |   } else { | 
 |     manifolds_.resize(function->parameter_block_sizes().size(), nullptr); | 
 |   } | 
 |  | 
 |   auto finite_diff_cost_function = | 
 |       std::make_unique<DynamicNumericDiffCostFunction<CostFunction, RIDDERS>>( | 
 |           function, DO_NOT_TAKE_OWNERSHIP, options); | 
 |   const vector<int32_t>& parameter_block_sizes = | 
 |       function->parameter_block_sizes(); | 
 |   const int num_parameter_blocks = parameter_block_sizes.size(); | 
 |   for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |     finite_diff_cost_function->AddParameterBlock(parameter_block_sizes[i]); | 
 |   } | 
 |   finite_diff_cost_function->SetNumResiduals(function->num_residuals()); | 
 |  | 
 |   finite_diff_cost_function_ = std::move(finite_diff_cost_function); | 
 | } | 
 |  | 
 | bool GradientChecker::Probe(double const* const* parameters, | 
 |                             double relative_precision, | 
 |                             ProbeResults* results_param) const { | 
 |   int num_residuals = function_->num_residuals(); | 
 |  | 
 |   // Make sure that we have a place to store results, no matter if the user has | 
 |   // provided an output argument. | 
 |   ProbeResults* results; | 
 |   ProbeResults results_local; | 
 |   if (results_param != nullptr) { | 
 |     results = results_param; | 
 |     results->residuals.resize(0); | 
 |     results->jacobians.clear(); | 
 |     results->numeric_jacobians.clear(); | 
 |     results->local_jacobians.clear(); | 
 |     results->local_numeric_jacobians.clear(); | 
 |     results->error_log.clear(); | 
 |   } else { | 
 |     results = &results_local; | 
 |   } | 
 |   results->maximum_relative_error = 0.0; | 
 |   results->return_value = true; | 
 |  | 
 |   // Evaluate the derivative using the user supplied code. | 
 |   vector<Matrix>& jacobians = results->jacobians; | 
 |   vector<Matrix>& local_jacobians = results->local_jacobians; | 
 |   if (!EvaluateCostFunction(function_, | 
 |                             parameters, | 
 |                             manifolds_, | 
 |                             &results->residuals, | 
 |                             &jacobians, | 
 |                             &local_jacobians)) { | 
 |     results->error_log = "Function evaluation with Jacobians failed."; | 
 |     results->return_value = false; | 
 |   } | 
 |  | 
 |   // Evaluate the derivative using numeric derivatives. | 
 |   vector<Matrix>& numeric_jacobians = results->numeric_jacobians; | 
 |   vector<Matrix>& local_numeric_jacobians = results->local_numeric_jacobians; | 
 |   Vector finite_diff_residuals; | 
 |   if (!EvaluateCostFunction(finite_diff_cost_function_.get(), | 
 |                             parameters, | 
 |                             manifolds_, | 
 |                             &finite_diff_residuals, | 
 |                             &numeric_jacobians, | 
 |                             &local_numeric_jacobians)) { | 
 |     results->error_log += | 
 |         "\nFunction evaluation with numerical " | 
 |         "differentiation failed."; | 
 |     results->return_value = false; | 
 |   } | 
 |  | 
 |   if (!results->return_value) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_residuals; ++i) { | 
 |     if (!IsClose(results->residuals[i], | 
 |                  finite_diff_residuals[i], | 
 |                  relative_precision, | 
 |                  nullptr, | 
 |                  nullptr)) { | 
 |       results->error_log = | 
 |           "Function evaluation with and without Jacobians " | 
 |           "resulted in different residuals."; | 
 |       LOG(INFO) << results->residuals.transpose(); | 
 |       LOG(INFO) << finite_diff_residuals.transpose(); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // See if any elements have relative error larger than the threshold. | 
 |   int num_bad_jacobian_components = 0; | 
 |   double& worst_relative_error = results->maximum_relative_error; | 
 |   worst_relative_error = 0; | 
 |  | 
 |   // Accumulate the error message for all the jacobians, since it won't get | 
 |   // output if there are no bad jacobian components. | 
 |   string error_log; | 
 |   for (int k = 0; k < function_->parameter_block_sizes().size(); k++) { | 
 |     StringAppendF(&error_log, | 
 |                   "========== " | 
 |                   "Jacobian for block %d: (%ld by %ld)) " | 
 |                   "==========\n", | 
 |                   k, | 
 |                   static_cast<long>(local_jacobians[k].rows()), | 
 |                   static_cast<long>(local_jacobians[k].cols())); | 
 |     // The funny spacing creates appropriately aligned column headers. | 
 |     error_log += | 
 |         " block  row  col        user dx/dy    num diff dx/dy         " | 
 |         "abs error    relative error         parameter          residual\n"; | 
 |  | 
 |     for (int i = 0; i < local_jacobians[k].rows(); i++) { | 
 |       for (int j = 0; j < local_jacobians[k].cols(); j++) { | 
 |         double term_jacobian = local_jacobians[k](i, j); | 
 |         double finite_jacobian = local_numeric_jacobians[k](i, j); | 
 |         double relative_error, absolute_error; | 
 |         bool bad_jacobian_entry = !IsClose(term_jacobian, | 
 |                                            finite_jacobian, | 
 |                                            relative_precision, | 
 |                                            &relative_error, | 
 |                                            &absolute_error); | 
 |         worst_relative_error = std::max(worst_relative_error, relative_error); | 
 |  | 
 |         StringAppendF(&error_log, | 
 |                       "%6d %4d %4d %17g %17g %17g %17g %17g %17g", | 
 |                       k, | 
 |                       i, | 
 |                       j, | 
 |                       term_jacobian, | 
 |                       finite_jacobian, | 
 |                       absolute_error, | 
 |                       relative_error, | 
 |                       parameters[k][j], | 
 |                       results->residuals[i]); | 
 |  | 
 |         if (bad_jacobian_entry) { | 
 |           num_bad_jacobian_components++; | 
 |           StringAppendF(&error_log, | 
 |                         " ------ (%d,%d,%d) Relative error worse than %g", | 
 |                         k, | 
 |                         i, | 
 |                         j, | 
 |                         relative_precision); | 
 |         } | 
 |         error_log += "\n"; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Since there were some bad errors, dump comprehensive debug info. | 
 |   if (num_bad_jacobian_components) { | 
 |     string header = StringPrintf( | 
 |         "\nDetected %d bad Jacobian component(s). " | 
 |         "Worst relative error was %g.\n", | 
 |         num_bad_jacobian_components, | 
 |         worst_relative_error); | 
 |     results->error_log = header + "\n" + error_log; | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace ceres |