| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/normal_prior.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstddef> | 
 | #include <random> | 
 |  | 
 | #include "ceres/internal/eigen.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | TEST(NormalPriorTest, ResidualAtRandomPosition) { | 
 |   std::mt19937 prng; | 
 |   std::uniform_real_distribution<double> distribution(-1.0, 1.0); | 
 |   auto randu = [&distribution, &prng] { return distribution(prng); }; | 
 |   for (int num_rows = 1; num_rows < 5; ++num_rows) { | 
 |     for (int num_cols = 1; num_cols < 5; ++num_cols) { | 
 |       Vector b(num_cols); | 
 |       b.setRandom(); | 
 |       Matrix A(num_rows, num_cols); | 
 |       A.setRandom(); | 
 |  | 
 |       auto* x = new double[num_cols]; | 
 |       std::generate_n(x, num_cols, randu); | 
 |  | 
 |       auto* jacobian = new double[num_rows * num_cols]; | 
 |       Vector residuals(num_rows); | 
 |  | 
 |       NormalPrior prior(A, b); | 
 |       prior.Evaluate(&x, residuals.data(), &jacobian); | 
 |  | 
 |       // Compare the norm of the residual | 
 |       double residual_diff_norm = | 
 |           (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); | 
 |       EXPECT_NEAR(residual_diff_norm, 0, 1e-10); | 
 |  | 
 |       // Compare the jacobians | 
 |       MatrixRef J(jacobian, num_rows, num_cols); | 
 |       double jacobian_diff_norm = (J - A).norm(); | 
 |       EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10); | 
 |  | 
 |       delete[] x; | 
 |       delete[] jacobian; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) { | 
 |   std::mt19937 prng; | 
 |   std::uniform_real_distribution<double> distribution(-1.0, 1.0); | 
 |   auto randu = [&distribution, &prng] { return distribution(prng); }; | 
 |   for (int num_rows = 1; num_rows < 5; ++num_rows) { | 
 |     for (int num_cols = 1; num_cols < 5; ++num_cols) { | 
 |       Vector b(num_cols); | 
 |       b.setRandom(); | 
 |       Matrix A(num_rows, num_cols); | 
 |       A.setRandom(); | 
 |  | 
 |       auto* x = new double[num_cols]; | 
 |       std::generate_n(x, num_cols, randu); | 
 |  | 
 |       double* jacobians[1]; | 
 |       jacobians[0] = nullptr; | 
 |  | 
 |       Vector residuals(num_rows); | 
 |  | 
 |       NormalPrior prior(A, b); | 
 |       prior.Evaluate(&x, residuals.data(), jacobians); | 
 |  | 
 |       // Compare the norm of the residual | 
 |       double residual_diff_norm = | 
 |           (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); | 
 |       EXPECT_NEAR(residual_diff_norm, 0, 1e-10); | 
 |  | 
 |       prior.Evaluate(&x, residuals.data(), nullptr); | 
 |       // Compare the norm of the residual | 
 |       residual_diff_norm = | 
 |           (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); | 
 |       EXPECT_NEAR(residual_diff_norm, 0, 1e-10); | 
 |  | 
 |       delete[] x; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |