|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | #include "benchmark/benchmark.h" | 
|  | #include "ceres/eigen_vector_ops.h" | 
|  | #include "ceres/parallel_for.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | const int kVectorSize = 64 * 1024 * 1024 / sizeof(double); | 
|  |  | 
|  | static void SetZero(benchmark::State& state) { | 
|  | Vector x = Vector::Random(kVectorSize); | 
|  | for (auto _ : state) { | 
|  | x.setZero(); | 
|  | } | 
|  | CHECK_EQ(x.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(SetZero); | 
|  |  | 
|  | static void SetZeroParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | Vector x = Vector::Random(kVectorSize); | 
|  | for (auto _ : state) { | 
|  | ParallelSetZero(&context, num_threads, x); | 
|  | } | 
|  | CHECK_EQ(x.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(SetZeroParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void Negate(benchmark::State& state) { | 
|  | Vector x = Vector::Random(kVectorSize).normalized(); | 
|  | const Vector x_init = x; | 
|  |  | 
|  | for (auto _ : state) { | 
|  | x = -x; | 
|  | } | 
|  | CHECK((x - x_init).squaredNorm() == 0. || (x + x_init).squaredNorm() == 0); | 
|  | } | 
|  | BENCHMARK(Negate); | 
|  |  | 
|  | static void NegateParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | Vector x = Vector::Random(kVectorSize).normalized(); | 
|  | const Vector x_init = x; | 
|  |  | 
|  | for (auto _ : state) { | 
|  | ParallelAssign(&context, num_threads, x, -x); | 
|  | } | 
|  | CHECK((x - x_init).squaredNorm() == 0. || (x + x_init).squaredNorm() == 0); | 
|  | } | 
|  | BENCHMARK(NegateParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void Assign(benchmark::State& state) { | 
|  | Vector x = Vector::Random(kVectorSize); | 
|  | Vector y = Vector(kVectorSize); | 
|  | for (auto _ : state) { | 
|  | y.block(0, 0, kVectorSize, 1) = x.block(0, 0, kVectorSize, 1); | 
|  | } | 
|  | CHECK_EQ((y - x).squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(Assign); | 
|  |  | 
|  | static void AssignParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | Vector x = Vector::Random(kVectorSize); | 
|  | Vector y = Vector(kVectorSize); | 
|  |  | 
|  | for (auto _ : state) { | 
|  | ParallelAssign(&context, num_threads, y, x); | 
|  | } | 
|  | CHECK_EQ((y - x).squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(AssignParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void D2X(benchmark::State& state) { | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  | const Vector D = Vector::Random(kVectorSize); | 
|  | Vector y = Vector::Zero(kVectorSize); | 
|  | for (auto _ : state) { | 
|  | y = D.array().square() * x.array(); | 
|  | } | 
|  | CHECK_GT(y.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(D2X); | 
|  |  | 
|  | static void D2XParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  | const Vector D = Vector::Random(kVectorSize); | 
|  | Vector y = Vector(kVectorSize); | 
|  |  | 
|  | for (auto _ : state) { | 
|  | ParallelAssign(&context, num_threads, y, D.array().square() * x.array()); | 
|  | } | 
|  | CHECK_GT(y.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(D2XParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void DivideSqrt(benchmark::State& state) { | 
|  | Vector diagonal = Vector::Random(kVectorSize).array().abs(); | 
|  | const double radius = 0.5; | 
|  | for (auto _ : state) { | 
|  | diagonal = (diagonal / radius).array().sqrt(); | 
|  | } | 
|  | CHECK_GT(diagonal.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(DivideSqrt); | 
|  |  | 
|  | static void DivideSqrtParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | Vector diagonal = Vector::Random(kVectorSize).array().abs(); | 
|  | const double radius = 0.5; | 
|  | for (auto _ : state) { | 
|  | ParallelAssign( | 
|  | &context, num_threads, diagonal, (diagonal / radius).cwiseSqrt()); | 
|  | } | 
|  | CHECK_GT(diagonal.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(DivideSqrtParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void Clamp(benchmark::State& state) { | 
|  | Vector diagonal = Vector::Random(kVectorSize); | 
|  | const double min = -0.5; | 
|  | const double max = 0.5; | 
|  | for (auto _ : state) { | 
|  | for (int i = 0; i < kVectorSize; ++i) { | 
|  | diagonal[i] = std::min(std::max(diagonal[i], min), max); | 
|  | } | 
|  | } | 
|  | CHECK_LE(diagonal.maxCoeff(), 0.5); | 
|  | CHECK_GE(diagonal.minCoeff(), -0.5); | 
|  | } | 
|  | BENCHMARK(Clamp); | 
|  |  | 
|  | static void ClampParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | Vector diagonal = Vector::Random(kVectorSize); | 
|  | const double min = -0.5; | 
|  | const double max = 0.5; | 
|  | for (auto _ : state) { | 
|  | ParallelAssign( | 
|  | &context, num_threads, diagonal, diagonal.array().max(min).min(max)); | 
|  | } | 
|  | CHECK_LE(diagonal.maxCoeff(), 0.5); | 
|  | CHECK_GE(diagonal.minCoeff(), -0.5); | 
|  | } | 
|  | BENCHMARK(ClampParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void Norm(benchmark::State& state) { | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  |  | 
|  | double total = 0.; | 
|  | for (auto _ : state) { | 
|  | total += x.norm(); | 
|  | } | 
|  | CHECK_GT(total, 0.); | 
|  | } | 
|  | BENCHMARK(Norm); | 
|  |  | 
|  | static void NormParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  |  | 
|  | double total = 0.; | 
|  | for (auto _ : state) { | 
|  | total += Norm(x, &context, num_threads); | 
|  | } | 
|  | CHECK_GT(total, 0.); | 
|  | } | 
|  | BENCHMARK(NormParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void Dot(benchmark::State& state) { | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  | const Vector y = Vector::Random(kVectorSize); | 
|  |  | 
|  | double total = 0.; | 
|  | for (auto _ : state) { | 
|  | total += x.dot(y); | 
|  | } | 
|  | CHECK_NE(total, 0.); | 
|  | } | 
|  | BENCHMARK(Dot); | 
|  |  | 
|  | static void DotParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  | const Vector y = Vector::Random(kVectorSize); | 
|  |  | 
|  | double total = 0.; | 
|  | for (auto _ : state) { | 
|  | total += Dot(x, y, &context, num_threads); | 
|  | } | 
|  | CHECK_NE(total, 0.); | 
|  | } | 
|  | BENCHMARK(DotParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | static void Axpby(benchmark::State& state) { | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  | const Vector y = Vector::Random(kVectorSize); | 
|  | Vector z = Vector::Zero(kVectorSize); | 
|  | const double a = 3.1415; | 
|  | const double b = 1.2345; | 
|  |  | 
|  | double total = 0.; | 
|  | for (auto _ : state) { | 
|  | z = a * x + b * y; | 
|  | } | 
|  | CHECK_GT(z.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(Axpby); | 
|  |  | 
|  | static void AxpbyParallel(benchmark::State& state) { | 
|  | const int num_threads = state.range(0); | 
|  | ContextImpl context; | 
|  | context.EnsureMinimumThreads(num_threads); | 
|  |  | 
|  | const Vector x = Vector::Random(kVectorSize); | 
|  | const Vector y = Vector::Random(kVectorSize); | 
|  | Vector z = Vector::Zero(kVectorSize); | 
|  | const double a = 3.1415; | 
|  | const double b = 1.2345; | 
|  |  | 
|  | double total = 0.; | 
|  | for (auto _ : state) { | 
|  | Axpby(a, x, b, y, z, &context, num_threads); | 
|  | } | 
|  | CHECK_GT(z.squaredNorm(), 0.); | 
|  | } | 
|  | BENCHMARK(AxpbyParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | BENCHMARK_MAIN(); |