| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // |
| // A simple implementation of N-dimensional dual numbers, for automatically |
| // computing exact derivatives of functions. |
| // |
| // While a complete treatment of the mechanics of automatic differentiation is |
| // beyond the scope of this header (see |
| // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the |
| // basic idea is to extend normal arithmetic with an extra element, "e," often |
| // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual |
| // numbers are extensions of the real numbers analogous to complex numbers: |
| // whereas complex numbers augment the reals by introducing an imaginary unit i |
| // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such |
| // that e^2 = 0. Dual numbers have two components: the "real" component and the |
| // "infinitesimal" component, generally written as x + y*e. Surprisingly, this |
| // leads to a convenient method for computing exact derivatives without needing |
| // to manipulate complicated symbolic expressions. |
| // |
| // For example, consider the function |
| // |
| // f(x) = x^2 , |
| // |
| // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20. |
| // Next, argument 10 with an infinitesimal to get: |
| // |
| // f(10 + e) = (10 + e)^2 |
| // = 100 + 2 * 10 * e + e^2 |
| // = 100 + 20 * e -+- |
| // -- | |
| // | +--- This is zero, since e^2 = 0 |
| // | |
| // +----------------- This is df/dx! |
| // |
| // Note that the derivative of f with respect to x is simply the infinitesimal |
| // component of the value of f(x + e). So, in order to take the derivative of |
| // any function, it is only necessary to replace the numeric "object" used in |
| // the function with one extended with infinitesimals. The class Jet, defined in |
| // this header, is one such example of this, where substitution is done with |
| // templates. |
| // |
| // To handle derivatives of functions taking multiple arguments, different |
| // infinitesimals are used, one for each variable to take the derivative of. For |
| // example, consider a scalar function of two scalar parameters x and y: |
| // |
| // f(x, y) = x^2 + x * y |
| // |
| // Following the technique above, to compute the derivatives df/dx and df/dy for |
| // f(1, 3) involves doing two evaluations of f, the first time replacing x with |
| // x + e, the second time replacing y with y + e. |
| // |
| // For df/dx: |
| // |
| // f(1 + e, y) = (1 + e)^2 + (1 + e) * 3 |
| // = 1 + 2 * e + 3 + 3 * e |
| // = 4 + 5 * e |
| // |
| // --> df/dx = 5 |
| // |
| // For df/dy: |
| // |
| // f(1, 3 + e) = 1^2 + 1 * (3 + e) |
| // = 1 + 3 + e |
| // = 4 + e |
| // |
| // --> df/dy = 1 |
| // |
| // To take the gradient of f with the implementation of dual numbers ("jets") in |
| // this file, it is necessary to create a single jet type which has components |
| // for the derivative in x and y, and passing them to a templated version of f: |
| // |
| // template<typename T> |
| // T f(const T &x, const T &y) { |
| // return x * x + x * y; |
| // } |
| // |
| // // The "2" means there should be 2 dual number components. |
| // // It computes the partial derivative at x=10, y=20. |
| // Jet<double, 2> x(10, 0); // Pick the 0th dual number for x. |
| // Jet<double, 2> y(20, 1); // Pick the 1st dual number for y. |
| // Jet<double, 2> z = f(x, y); |
| // |
| // LOG(INFO) << "df/dx = " << z.v[0] |
| // << "df/dy = " << z.v[1]; |
| // |
| // Most users should not use Jet objects directly; a wrapper around Jet objects, |
| // which makes computing the derivative, gradient, or jacobian of templated |
| // functors simple, is in autodiff.h. Even autodiff.h should not be used |
| // directly; instead autodiff_cost_function.h is typically the file of interest. |
| // |
| // For the more mathematically inclined, this file implements first-order |
| // "jets". A 1st order jet is an element of the ring |
| // |
| // T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2 |
| // |
| // which essentially means that each jet consists of a "scalar" value 'a' from T |
| // and a 1st order perturbation vector 'v' of length N: |
| // |
| // x = a + \sum_i v[i] t_i |
| // |
| // A shorthand is to write an element as x = a + u, where u is the perturbation. |
| // Then, the main point about the arithmetic of jets is that the product of |
| // perturbations is zero: |
| // |
| // (a + u) * (b + v) = ab + av + bu + uv |
| // = ab + (av + bu) + 0 |
| // |
| // which is what operator* implements below. Addition is simpler: |
| // |
| // (a + u) + (b + v) = (a + b) + (u + v). |
| // |
| // The only remaining question is how to evaluate the function of a jet, for |
| // which we use the chain rule: |
| // |
| // f(a + u) = f(a) + f'(a) u |
| // |
| // where f'(a) is the (scalar) derivative of f at a. |
| // |
| // By pushing these things through sufficiently and suitably templated |
| // functions, we can do automatic differentiation. Just be sure to turn on |
| // function inlining and common-subexpression elimination, or it will be very |
| // slow! |
| // |
| // WARNING: Most Ceres users should not directly include this file or know the |
| // details of how jets work. Instead the suggested method for automatic |
| // derivatives is to use autodiff_cost_function.h, which is a wrapper around |
| // both jets.h and autodiff.h to make taking derivatives of cost functions for |
| // use in Ceres easier. |
| |
| #ifndef CERES_PUBLIC_JET_H_ |
| #define CERES_PUBLIC_JET_H_ |
| |
| #include <cmath> |
| #include <complex> |
| #include <iosfwd> |
| #include <iostream> // NOLINT |
| #include <limits> |
| #include <numeric> |
| #include <string> |
| #include <type_traits> |
| |
| #include "Eigen/Core" |
| #include "ceres/internal/jet_traits.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/jet_fwd.h" |
| |
| // Here we provide partial specializations of std::common_type for the Jet class |
| // to allow determining a Jet type with a common underlying arithmetic type. |
| // Such an arithmetic type can be either a scalar or an another Jet. An example |
| // for a common type, say, between a float and a Jet<double, N> is a Jet<double, |
| // N> (i.e., std::common_type_t<float, ceres::Jet<double, N>> and |
| // ceres::Jet<double, N> refer to the same type.) |
| // |
| // The partial specialization are also used for determining compatible types by |
| // means of SFINAE and thus allow such types to be expressed as operands of |
| // logical comparison operators. Missing (partial) specialization of |
| // std::common_type for a particular (custom) type will therefore disable the |
| // use of comparison operators defined by Ceres. |
| // |
| // Since these partial specializations are used as SFINAE constraints, they |
| // enable standard promotion rules between various scalar types and consequently |
| // their use in comparison against a Jet without providing implicit |
| // conversions from a scalar, such as an int, to a Jet (see the implementation |
| // of logical comparison operators below). |
| |
| template <typename T, int N, typename U> |
| struct std::common_type<T, ceres::Jet<U, N>> { |
| using type = ceres::Jet<common_type_t<T, U>, N>; |
| }; |
| |
| template <typename T, int N, typename U> |
| struct std::common_type<ceres::Jet<T, N>, U> { |
| using type = ceres::Jet<common_type_t<T, U>, N>; |
| }; |
| |
| template <typename T, int N, typename U> |
| struct std::common_type<ceres::Jet<T, N>, ceres::Jet<U, N>> { |
| using type = ceres::Jet<common_type_t<T, U>, N>; |
| }; |
| |
| namespace ceres { |
| |
| template <typename T, int N> |
| struct Jet { |
| enum { DIMENSION = N }; |
| using Scalar = T; |
| |
| // Default-construct "a" because otherwise this can lead to false errors about |
| // uninitialized uses when other classes relying on default constructed T |
| // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that |
| // the C++ standard mandates that e.g. default constructed doubles are |
| // initialized to 0.0; see sections 8.5 of the C++03 standard. |
| Jet() : a() { v.setConstant(Scalar()); } |
| |
| // Constructor from scalar: a + 0. |
| explicit Jet(const T& value) { |
| a = value; |
| v.setConstant(Scalar()); |
| } |
| |
| // Constructor from scalar plus variable: a + t_i. |
| Jet(const T& value, int k) { |
| a = value; |
| v.setConstant(Scalar()); |
| v[k] = T(1.0); |
| } |
| |
| // Constructor from scalar and vector part |
| // The use of Eigen::DenseBase allows Eigen expressions |
| // to be passed in without being fully evaluated until |
| // they are assigned to v |
| template <typename Derived> |
| EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived>& v) |
| : a(a), v(v) {} |
| |
| // Compound operators |
| Jet<T, N>& operator+=(const Jet<T, N>& y) { |
| *this = *this + y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator-=(const Jet<T, N>& y) { |
| *this = *this - y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator*=(const Jet<T, N>& y) { |
| *this = *this * y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator/=(const Jet<T, N>& y) { |
| *this = *this / y; |
| return *this; |
| } |
| |
| // Compound with scalar operators. |
| Jet<T, N>& operator+=(const T& s) { |
| *this = *this + s; |
| return *this; |
| } |
| |
| Jet<T, N>& operator-=(const T& s) { |
| *this = *this - s; |
| return *this; |
| } |
| |
| Jet<T, N>& operator*=(const T& s) { |
| *this = *this * s; |
| return *this; |
| } |
| |
| Jet<T, N>& operator/=(const T& s) { |
| *this = *this / s; |
| return *this; |
| } |
| |
| // The scalar part. |
| T a; |
| |
| // The infinitesimal part. |
| Eigen::Matrix<T, N, 1> v; |
| |
| // This struct needs to have an Eigen aligned operator new as it contains |
| // fixed-size Eigen types. |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| }; |
| |
| // Unary + |
| template <typename T, int N> |
| inline Jet<T, N> const& operator+(const Jet<T, N>& f) { |
| return f; |
| } |
| |
| // TODO(keir): Try adding __attribute__((always_inline)) to these functions to |
| // see if it causes a performance increase. |
| |
| // Unary - |
| template <typename T, int N> |
| inline Jet<T, N> operator-(const Jet<T, N>& f) { |
| return Jet<T, N>(-f.a, -f.v); |
| } |
| |
| // Binary + |
| template <typename T, int N> |
| inline Jet<T, N> operator+(const Jet<T, N>& f, const Jet<T, N>& g) { |
| return Jet<T, N>(f.a + g.a, f.v + g.v); |
| } |
| |
| // Binary + with a scalar: x + s |
| template <typename T, int N> |
| inline Jet<T, N> operator+(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a + s, f.v); |
| } |
| |
| // Binary + with a scalar: s + x |
| template <typename T, int N> |
| inline Jet<T, N> operator+(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(f.a + s, f.v); |
| } |
| |
| // Binary - |
| template <typename T, int N> |
| inline Jet<T, N> operator-(const Jet<T, N>& f, const Jet<T, N>& g) { |
| return Jet<T, N>(f.a - g.a, f.v - g.v); |
| } |
| |
| // Binary - with a scalar: x - s |
| template <typename T, int N> |
| inline Jet<T, N> operator-(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a - s, f.v); |
| } |
| |
| // Binary - with a scalar: s - x |
| template <typename T, int N> |
| inline Jet<T, N> operator-(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(s - f.a, -f.v); |
| } |
| |
| // Binary * |
| template <typename T, int N> |
| inline Jet<T, N> operator*(const Jet<T, N>& f, const Jet<T, N>& g) { |
| return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a); |
| } |
| |
| // Binary * with a scalar: x * s |
| template <typename T, int N> |
| inline Jet<T, N> operator*(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a * s, f.v * s); |
| } |
| |
| // Binary * with a scalar: s * x |
| template <typename T, int N> |
| inline Jet<T, N> operator*(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(f.a * s, f.v * s); |
| } |
| |
| // Binary / |
| template <typename T, int N> |
| inline Jet<T, N> operator/(const Jet<T, N>& f, const Jet<T, N>& g) { |
| // This uses: |
| // |
| // a + u (a + u)(b - v) (a + u)(b - v) |
| // ----- = -------------- = -------------- |
| // b + v (b + v)(b - v) b^2 |
| // |
| // which holds because v*v = 0. |
| const T g_a_inverse = T(1.0) / g.a; |
| const T f_a_by_g_a = f.a * g_a_inverse; |
| return Jet<T, N>(f_a_by_g_a, (f.v - f_a_by_g_a * g.v) * g_a_inverse); |
| } |
| |
| // Binary / with a scalar: s / x |
| template <typename T, int N> |
| inline Jet<T, N> operator/(T s, const Jet<T, N>& g) { |
| const T minus_s_g_a_inverse2 = -s / (g.a * g.a); |
| return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2); |
| } |
| |
| // Binary / with a scalar: x / s |
| template <typename T, int N> |
| inline Jet<T, N> operator/(const Jet<T, N>& f, T s) { |
| const T s_inverse = T(1.0) / s; |
| return Jet<T, N>(f.a * s_inverse, f.v * s_inverse); |
| } |
| |
| // Binary comparison operators for both scalars and jets. At least one of the |
| // operands must be a Jet. Promotable scalars (e.g., int, float, double etc.) |
| // can appear on either side of the operator. std::common_type_t is used as an |
| // SFINAE constraint to selectively enable compatible operand types. This allows |
| // comparison, for instance, against int literals without implicit conversion. |
| // In case the Jet arithmetic type is a Jet itself, a recursive expansion of Jet |
| // value is performed. |
| #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \ |
| template <typename Lhs, \ |
| typename Rhs, \ |
| std::enable_if_t<PromotableJetOperands_v<Lhs, Rhs>>* = nullptr> \ |
| constexpr bool operator op(const Lhs& f, const Rhs& g) noexcept( \ |
| noexcept(internal::AsScalar(f) op internal::AsScalar(g))) { \ |
| using internal::AsScalar; \ |
| return AsScalar(f) op AsScalar(g); \ |
| } |
| CERES_DEFINE_JET_COMPARISON_OPERATOR(<) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR(<=) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR(>) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR(>=) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR(==) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR(!=) // NOLINT |
| #undef CERES_DEFINE_JET_COMPARISON_OPERATOR |
| |
| // Pull some functions from namespace std. |
| // |
| // This is necessary because we want to use the same name (e.g. 'sqrt') for |
| // double-valued and Jet-valued functions, but we are not allowed to put |
| // Jet-valued functions inside namespace std. |
| using std::abs; |
| using std::acos; |
| using std::asin; |
| using std::atan; |
| using std::atan2; |
| using std::cbrt; |
| using std::ceil; |
| using std::copysign; |
| using std::cos; |
| using std::cosh; |
| using std::erf; |
| using std::erfc; |
| using std::exp; |
| using std::exp2; |
| using std::expm1; |
| using std::fdim; |
| using std::floor; |
| using std::fma; |
| using std::fmax; |
| using std::fmin; |
| using std::fpclassify; |
| using std::hypot; |
| using std::isfinite; |
| using std::isinf; |
| using std::isnan; |
| using std::isnormal; |
| using std::log; |
| using std::log10; |
| using std::log1p; |
| using std::log2; |
| using std::norm; |
| using std::pow; |
| using std::signbit; |
| using std::sin; |
| using std::sinh; |
| using std::sqrt; |
| using std::tan; |
| using std::tanh; |
| |
| // MSVC (up to 1930) defines quiet comparison functions as template functions |
| // which causes compilation errors due to ambiguity in the template parameter |
| // type resolution for using declarations in the ceres namespace. Workaround the |
| // issue by defining specific overload and bypass MSVC standard library |
| // definitions. |
| #if defined(_MSC_VER) |
| inline bool isgreater(double lhs, |
| double rhs) noexcept(noexcept(std::isgreater(lhs, rhs))) { |
| return std::isgreater(lhs, rhs); |
| } |
| inline bool isless(double lhs, |
| double rhs) noexcept(noexcept(std::isless(lhs, rhs))) { |
| return std::isless(lhs, rhs); |
| } |
| inline bool islessequal(double lhs, |
| double rhs) noexcept(noexcept(std::islessequal(lhs, |
| rhs))) { |
| return std::islessequal(lhs, rhs); |
| } |
| inline bool isgreaterequal(double lhs, double rhs) noexcept( |
| noexcept(std::isgreaterequal(lhs, rhs))) { |
| return std::isgreaterequal(lhs, rhs); |
| } |
| inline bool islessgreater(double lhs, double rhs) noexcept( |
| noexcept(std::islessgreater(lhs, rhs))) { |
| return std::islessgreater(lhs, rhs); |
| } |
| inline bool isunordered(double lhs, |
| double rhs) noexcept(noexcept(std::isunordered(lhs, |
| rhs))) { |
| return std::isunordered(lhs, rhs); |
| } |
| #else |
| using std::isgreater; |
| using std::isgreaterequal; |
| using std::isless; |
| using std::islessequal; |
| using std::islessgreater; |
| using std::isunordered; |
| #endif |
| |
| #ifdef CERES_HAS_CPP20 |
| using std::lerp; |
| using std::midpoint; |
| #endif // defined(CERES_HAS_CPP20) |
| |
| // Legacy names from pre-C++11 days. |
| // clang-format off |
| CERES_DEPRECATED_WITH_MSG("ceres::IsFinite will be removed in a future Ceres Solver release. Please use ceres::isfinite.") |
| inline bool IsFinite(double x) { return std::isfinite(x); } |
| CERES_DEPRECATED_WITH_MSG("ceres::IsInfinite will be removed in a future Ceres Solver release. Please use ceres::isinf.") |
| inline bool IsInfinite(double x) { return std::isinf(x); } |
| CERES_DEPRECATED_WITH_MSG("ceres::IsNaN will be removed in a future Ceres Solver release. Please use ceres::isnan.") |
| inline bool IsNaN(double x) { return std::isnan(x); } |
| CERES_DEPRECATED_WITH_MSG("ceres::IsNormal will be removed in a future Ceres Solver release. Please use ceres::isnormal.") |
| inline bool IsNormal(double x) { return std::isnormal(x); } |
| // clang-format on |
| |
| // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule. |
| |
| // abs(x + h) ~= abs(x) + sgn(x)h |
| template <typename T, int N> |
| inline Jet<T, N> abs(const Jet<T, N>& f) { |
| return Jet<T, N>(abs(f.a), copysign(T(1), f.a) * f.v); |
| } |
| |
| // copysign(a, b) composes a float with the magnitude of a and the sign of b. |
| // Therefore, the function can be formally defined as |
| // |
| // copysign(a, b) = sgn(b)|a| |
| // |
| // where |
| // |
| // d/dx |x| = sgn(x) |
| // d/dx sgn(x) = 2δ(x) |
| // |
| // sgn(x) being the signum function. Differentiating copysign(a, b) with respect |
| // to a and b gives: |
| // |
| // d/da sgn(b)|a| = sgn(a) sgn(b) |
| // d/db sgn(b)|a| = 2|a|δ(b) |
| // |
| // with the dual representation given by |
| // |
| // copysign(a + da, b + db) ~= sgn(b)|a| + (sgn(a)sgn(b) da + 2|a|δ(b) db) |
| // |
| // where δ(b) is the Dirac delta function. |
| template <typename T, int N> |
| inline Jet<T, N> copysign(const Jet<T, N>& f, const Jet<T, N> g) { |
| // The Dirac delta function δ(b) is undefined at b=0 (here it's |
| // infinite) and 0 everywhere else. |
| T d = fpclassify(g) == FP_ZERO ? std::numeric_limits<T>::infinity() : T(0); |
| T sa = copysign(T(1), f.a); // sgn(a) |
| T sb = copysign(T(1), g.a); // sgn(b) |
| // The second part of the infinitesimal is 2|a|δ(b) which is either infinity |
| // or 0 unless a or any of the values of the b infinitesimal are 0. In the |
| // latter case, the corresponding values become NaNs (multiplying 0 by |
| // infinity gives NaN). We drop the constant factor 2 since it does not change |
| // the result (its values will still be either 0, infinity or NaN). |
| return Jet<T, N>(copysign(f.a, g.a), sa * sb * f.v + abs(f.a) * d * g.v); |
| } |
| |
| // log(a + h) ~= log(a) + h / a |
| template <typename T, int N> |
| inline Jet<T, N> log(const Jet<T, N>& f) { |
| const T a_inverse = T(1.0) / f.a; |
| return Jet<T, N>(log(f.a), f.v * a_inverse); |
| } |
| |
| // log10(a + h) ~= log10(a) + h / (a log(10)) |
| template <typename T, int N> |
| inline Jet<T, N> log10(const Jet<T, N>& f) { |
| // Most compilers will expand log(10) to a constant. |
| const T a_inverse = T(1.0) / (f.a * log(T(10.0))); |
| return Jet<T, N>(log10(f.a), f.v * a_inverse); |
| } |
| |
| // log1p(a + h) ~= log1p(a) + h / (1 + a) |
| template <typename T, int N> |
| inline Jet<T, N> log1p(const Jet<T, N>& f) { |
| const T a_inverse = T(1.0) / (T(1.0) + f.a); |
| return Jet<T, N>(log1p(f.a), f.v * a_inverse); |
| } |
| |
| // exp(a + h) ~= exp(a) + exp(a) h |
| template <typename T, int N> |
| inline Jet<T, N> exp(const Jet<T, N>& f) { |
| const T tmp = exp(f.a); |
| return Jet<T, N>(tmp, tmp * f.v); |
| } |
| |
| // expm1(a + h) ~= expm1(a) + exp(a) h |
| template <typename T, int N> |
| inline Jet<T, N> expm1(const Jet<T, N>& f) { |
| const T tmp = expm1(f.a); |
| const T expa = tmp + T(1.0); // exp(a) = expm1(a) + 1 |
| return Jet<T, N>(tmp, expa * f.v); |
| } |
| |
| // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a)) |
| template <typename T, int N> |
| inline Jet<T, N> sqrt(const Jet<T, N>& f) { |
| const T tmp = sqrt(f.a); |
| const T two_a_inverse = T(1.0) / (T(2.0) * tmp); |
| return Jet<T, N>(tmp, f.v * two_a_inverse); |
| } |
| |
| // cos(a + h) ~= cos(a) - sin(a) h |
| template <typename T, int N> |
| inline Jet<T, N> cos(const Jet<T, N>& f) { |
| return Jet<T, N>(cos(f.a), -sin(f.a) * f.v); |
| } |
| |
| // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h |
| template <typename T, int N> |
| inline Jet<T, N> acos(const Jet<T, N>& f) { |
| const T tmp = -T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| return Jet<T, N>(acos(f.a), tmp * f.v); |
| } |
| |
| // sin(a + h) ~= sin(a) + cos(a) h |
| template <typename T, int N> |
| inline Jet<T, N> sin(const Jet<T, N>& f) { |
| return Jet<T, N>(sin(f.a), cos(f.a) * f.v); |
| } |
| |
| // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h |
| template <typename T, int N> |
| inline Jet<T, N> asin(const Jet<T, N>& f) { |
| const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| return Jet<T, N>(asin(f.a), tmp * f.v); |
| } |
| |
| // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h |
| template <typename T, int N> |
| inline Jet<T, N> tan(const Jet<T, N>& f) { |
| const T tan_a = tan(f.a); |
| const T tmp = T(1.0) + tan_a * tan_a; |
| return Jet<T, N>(tan_a, tmp * f.v); |
| } |
| |
| // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h |
| template <typename T, int N> |
| inline Jet<T, N> atan(const Jet<T, N>& f) { |
| const T tmp = T(1.0) / (T(1.0) + f.a * f.a); |
| return Jet<T, N>(atan(f.a), tmp * f.v); |
| } |
| |
| // sinh(a + h) ~= sinh(a) + cosh(a) h |
| template <typename T, int N> |
| inline Jet<T, N> sinh(const Jet<T, N>& f) { |
| return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v); |
| } |
| |
| // cosh(a + h) ~= cosh(a) + sinh(a) h |
| template <typename T, int N> |
| inline Jet<T, N> cosh(const Jet<T, N>& f) { |
| return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v); |
| } |
| |
| // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h |
| template <typename T, int N> |
| inline Jet<T, N> tanh(const Jet<T, N>& f) { |
| const T tanh_a = tanh(f.a); |
| const T tmp = T(1.0) - tanh_a * tanh_a; |
| return Jet<T, N>(tanh_a, tmp * f.v); |
| } |
| |
| // The floor function should be used with extreme care as this operation will |
| // result in a zero derivative which provides no information to the solver. |
| // |
| // floor(a + h) ~= floor(a) + 0 |
| template <typename T, int N> |
| inline Jet<T, N> floor(const Jet<T, N>& f) { |
| return Jet<T, N>(floor(f.a)); |
| } |
| |
| // The ceil function should be used with extreme care as this operation will |
| // result in a zero derivative which provides no information to the solver. |
| // |
| // ceil(a + h) ~= ceil(a) + 0 |
| template <typename T, int N> |
| inline Jet<T, N> ceil(const Jet<T, N>& f) { |
| return Jet<T, N>(ceil(f.a)); |
| } |
| |
| // Some new additions to C++11: |
| |
| // cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3)) |
| template <typename T, int N> |
| inline Jet<T, N> cbrt(const Jet<T, N>& f) { |
| const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a)); |
| return Jet<T, N>(cbrt(f.a), f.v * derivative); |
| } |
| |
| // exp2(x + h) = 2^(x+h) ~= 2^x + h*2^x*log(2) |
| template <typename T, int N> |
| inline Jet<T, N> exp2(const Jet<T, N>& f) { |
| const T tmp = exp2(f.a); |
| const T derivative = tmp * log(T(2)); |
| return Jet<T, N>(tmp, f.v * derivative); |
| } |
| |
| // log2(x + h) ~= log2(x) + h / (x * log(2)) |
| template <typename T, int N> |
| inline Jet<T, N> log2(const Jet<T, N>& f) { |
| const T derivative = T(1.0) / (f.a * log(T(2))); |
| return Jet<T, N>(log2(f.a), f.v * derivative); |
| } |
| |
| // Like sqrt(x^2 + y^2), |
| // but acts to prevent underflow/overflow for small/large x/y. |
| // Note that the function is non-smooth at x=y=0, |
| // so the derivative is undefined there. |
| template <typename T, int N> |
| inline Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) { |
| // d/da sqrt(a) = 0.5 / sqrt(a) |
| // d/dx x^2 + y^2 = 2x |
| // So by the chain rule: |
| // d/dx sqrt(x^2 + y^2) = 0.5 / sqrt(x^2 + y^2) * 2x = x / sqrt(x^2 + y^2) |
| // d/dy sqrt(x^2 + y^2) = y / sqrt(x^2 + y^2) |
| const T tmp = hypot(x.a, y.a); |
| return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v); |
| } |
| |
| // Like sqrt(x^2 + y^2 + z^2), |
| // but acts to prevent underflow/overflow for small/large x/y/z. |
| // Note that the function is non-smooth at x=y=z=0, |
| // so the derivative is undefined there. |
| template <typename T, int N> |
| inline Jet<T, N> hypot(const Jet<T, N>& x, |
| const Jet<T, N>& y, |
| const Jet<T, N>& z) { |
| // d/da sqrt(a) = 0.5 / sqrt(a) |
| // d/dx x^2 + y^2 + z^2 = 2x |
| // So by the chain rule: |
| // d/dx sqrt(x^2 + y^2 + z^2) |
| // = 0.5 / sqrt(x^2 + y^2 + z^2) * 2x |
| // = x / sqrt(x^2 + y^2 + z^2) |
| // d/dy sqrt(x^2 + y^2 + z^2) = y / sqrt(x^2 + y^2 + z^2) |
| // d/dz sqrt(x^2 + y^2 + z^2) = z / sqrt(x^2 + y^2 + z^2) |
| const T tmp = hypot(x.a, y.a, z.a); |
| return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v + z.a / tmp * z.v); |
| } |
| |
| // Like x * y + z but rounded only once. |
| template <typename T, int N> |
| inline Jet<T, N> fma(const Jet<T, N>& x, |
| const Jet<T, N>& y, |
| const Jet<T, N>& z) { |
| // d/dx fma(x, y, z) = y |
| // d/dy fma(x, y, z) = x |
| // d/dz fma(x, y, z) = 1 |
| return Jet<T, N>(fma(x.a, y.a, z.a), y.a * x.v + x.a * y.v + z.v); |
| } |
| |
| // Return value of fmax() and fmin() on equality |
| // --------------------------------------------- |
| // |
| // There is arguably no good answer to what fmax() & fmin() should return on |
| // equality, which for Jets by definition ONLY compares the scalar parts. We |
| // choose what we think is the least worst option (averaging as Jets) which |
| // minimises undesirable/unexpected behaviour as used, and also supports client |
| // code written against Ceres versions prior to type promotion being supported |
| // in Jet comparisons (< v2.1). |
| // |
| // The std::max() convention of returning the first argument on equality is |
| // problematic, as it means that the derivative component may or may not be |
| // preserved (when comparing a Jet with a scalar) depending upon the ordering. |
| // |
| // Always returning the Jet in {Jet, scalar} cases on equality is problematic |
| // as it is inconsistent with the behaviour that would be obtained if the scalar |
| // was first cast to Jet and the {Jet, Jet} case was used. Prior to type |
| // promotion (Ceres v2.1) client code would typically cast constants to Jets |
| // e.g: fmax(x, T(2.0)) which means the {Jet, Jet} case predominates, and we |
| // still want the result to be order independent. |
| // |
| // Our intuition is that preserving a non-zero derivative is best, even if |
| // its value does not match either of the inputs. Averaging achieves this |
| // whilst ensuring argument ordering independence. This is also the approach |
| // used by the Jax library, and TensorFlow's reduce_max(). |
| |
| // Returns the larger of the two arguments, with Jet averaging on equality. |
| // NaNs are treated as missing data. |
| // |
| // NOTE: This function is NOT subject to any of the error conditions specified |
| // in `math_errhandling`. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline decltype(auto) fmax(const Lhs& x, const Rhs& y) { |
| using J = std::common_type_t<Lhs, Rhs>; |
| // As x == y may set FP exceptions in the presence of NaNs when used with |
| // non-default compiler options so we avoid its use here. |
| if (isnan(x) || isnan(y) || islessgreater(x, y)) { |
| return isnan(x) || isless(x, y) ? J{y} : J{x}; |
| } |
| // x == y (scalar parts) return the average of their Jet representations. |
| #if defined(CERES_HAS_CPP20) |
| return midpoint(J{x}, J{y}); |
| #else |
| return (J{x} + J{y}) * typename J::Scalar(0.5); |
| #endif // defined(CERES_HAS_CPP20) |
| } |
| |
| // Returns the smaller of the two arguments, with Jet averaging on equality. |
| // NaNs are treated as missing data. |
| // |
| // NOTE: This function is NOT subject to any of the error conditions specified |
| // in `math_errhandling`. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline decltype(auto) fmin(const Lhs& x, const Rhs& y) { |
| using J = std::common_type_t<Lhs, Rhs>; |
| // As x == y may set FP exceptions in the presence of NaNs when used with |
| // non-default compiler options so we avoid its use here. |
| if (isnan(x) || isnan(y) || islessgreater(x, y)) { |
| return isnan(x) || isgreater(x, y) ? J{y} : J{x}; |
| } |
| // x == y (scalar parts) return the average of their Jet representations. |
| #if defined(CERES_HAS_CPP20) |
| return midpoint(J{x}, J{y}); |
| #else |
| return (J{x} + J{y}) * typename J::Scalar(0.5); |
| #endif // defined(CERES_HAS_CPP20) |
| } |
| |
| // Returns the positive difference (f - g) of two arguments and zero if f <= g. |
| // If at least one argument is NaN, a NaN is return. |
| // |
| // NOTE At least one of the argument types must be a Jet, the other one can be a |
| // scalar. In case both arguments are Jets, their dimensionality must match. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline decltype(auto) fdim(const Lhs& f, const Rhs& g) { |
| using J = std::common_type_t<Lhs, Rhs>; |
| if (isnan(f) || isnan(g)) { |
| return std::numeric_limits<J>::quiet_NaN(); |
| } |
| return isgreater(f, g) ? J{f - g} : J{}; |
| } |
| |
| // erf is defined as an integral that cannot be expressed analytically |
| // however, the derivative is trivial to compute |
| // erf(x + h) = erf(x) + h * 2*exp(-x^2)/sqrt(pi) |
| template <typename T, int N> |
| inline Jet<T, N> erf(const Jet<T, N>& x) { |
| // We evaluate the constant as follows: |
| // 2 / sqrt(pi) = 1 / sqrt(atan(1.)) |
| // On POSIX systems it is defined as M_2_SQRTPI, but this is not |
| // portable and the type may not be T. The above expression |
| // evaluates to full precision with IEEE arithmetic and, since it's |
| // constant, the compiler can generate exactly the same code. gcc |
| // does so even at -O0. |
| return Jet<T, N>(erf(x.a), x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1))))); |
| } |
| |
| // erfc(x) = 1-erf(x) |
| // erfc(x + h) = erfc(x) + h * (-2*exp(-x^2)/sqrt(pi)) |
| template <typename T, int N> |
| inline Jet<T, N> erfc(const Jet<T, N>& x) { |
| // See in erf() above for the evaluation of the constant in the derivative. |
| return Jet<T, N>(erfc(x.a), |
| -x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1))))); |
| } |
| |
| // Bessel functions of the first kind with integer order equal to 0, 1, n. |
| // |
| // Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of |
| // _j[0,1,n](). Where available on MSVC, use _j[0,1,n]() to avoid deprecated |
| // function errors in client code (the specific warning is suppressed when |
| // Ceres itself is built). |
| inline double BesselJ0(double x) { |
| #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| return _j0(x); |
| #else |
| return j0(x); |
| #endif |
| } |
| inline double BesselJ1(double x) { |
| #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| return _j1(x); |
| #else |
| return j1(x); |
| #endif |
| } |
| inline double BesselJn(int n, double x) { |
| #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| return _jn(n, x); |
| #else |
| return jn(n, x); |
| #endif |
| } |
| |
| // For the formulae of the derivatives of the Bessel functions see the book: |
| // Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions, |
| // Cambridge University Press 2010. |
| // |
| // Formulae are also available at http://dlmf.nist.gov |
| |
| // See formula http://dlmf.nist.gov/10.6#E3 |
| // j0(a + h) ~= j0(a) - j1(a) h |
| template <typename T, int N> |
| inline Jet<T, N> BesselJ0(const Jet<T, N>& f) { |
| return Jet<T, N>(BesselJ0(f.a), -BesselJ1(f.a) * f.v); |
| } |
| |
| // See formula http://dlmf.nist.gov/10.6#E1 |
| // j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h |
| template <typename T, int N> |
| inline Jet<T, N> BesselJ1(const Jet<T, N>& f) { |
| return Jet<T, N>(BesselJ1(f.a), |
| T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v); |
| } |
| |
| // See formula http://dlmf.nist.gov/10.6#E1 |
| // j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h |
| template <typename T, int N> |
| inline Jet<T, N> BesselJn(int n, const Jet<T, N>& f) { |
| return Jet<T, N>( |
| BesselJn(n, f.a), |
| T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v); |
| } |
| |
| // Classification and comparison functionality referencing only the scalar part |
| // of a Jet. To classify the derivatives (e.g., for sanity checks), the dual |
| // part should be referenced explicitly. For instance, to check whether the |
| // derivatives of a Jet 'f' are reasonable, one can use |
| // |
| // isfinite(f.v.array()).all() |
| // !isnan(f.v.array()).any() |
| // |
| // etc., depending on the desired semantics. |
| // |
| // NOTE: Floating-point classification and comparison functions and operators |
| // should be used with care as no derivatives can be propagated by such |
| // functions directly but only by expressions resulting from corresponding |
| // conditional statements. At the same time, conditional statements can possibly |
| // introduce a discontinuity in the cost function making it impossible to |
| // evaluate its derivative and thus the optimization problem intractable. |
| |
| // Determines whether the scalar part of the Jet is finite. |
| template <typename T, int N> |
| inline bool isfinite(const Jet<T, N>& f) { |
| return isfinite(f.a); |
| } |
| |
| // Determines whether the scalar part of the Jet is infinite. |
| template <typename T, int N> |
| inline bool isinf(const Jet<T, N>& f) { |
| return isinf(f.a); |
| } |
| |
| // Determines whether the scalar part of the Jet is NaN. |
| template <typename T, int N> |
| inline bool isnan(const Jet<T, N>& f) { |
| return isnan(f.a); |
| } |
| |
| // Determines whether the scalar part of the Jet is neither zero, subnormal, |
| // infinite, nor NaN. |
| template <typename T, int N> |
| inline bool isnormal(const Jet<T, N>& f) { |
| return isnormal(f.a); |
| } |
| |
| // Determines whether the scalar part of the Jet f is less than the scalar |
| // part of g. |
| // |
| // NOTE: This function does NOT set any floating-point exceptions. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline bool isless(const Lhs& f, const Rhs& g) { |
| using internal::AsScalar; |
| return isless(AsScalar(f), AsScalar(g)); |
| } |
| |
| // Determines whether the scalar part of the Jet f is greater than the scalar |
| // part of g. |
| // |
| // NOTE: This function does NOT set any floating-point exceptions. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline bool isgreater(const Lhs& f, const Rhs& g) { |
| using internal::AsScalar; |
| return isgreater(AsScalar(f), AsScalar(g)); |
| } |
| |
| // Determines whether the scalar part of the Jet f is less than or equal to the |
| // scalar part of g. |
| // |
| // NOTE: This function does NOT set any floating-point exceptions. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline bool islessequal(const Lhs& f, const Rhs& g) { |
| using internal::AsScalar; |
| return islessequal(AsScalar(f), AsScalar(g)); |
| } |
| |
| // Determines whether the scalar part of the Jet f is less than or greater than |
| // (f < g || f > g) the scalar part of g. |
| // |
| // NOTE: This function does NOT set any floating-point exceptions. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline bool islessgreater(const Lhs& f, const Rhs& g) { |
| using internal::AsScalar; |
| return islessgreater(AsScalar(f), AsScalar(g)); |
| } |
| |
| // Determines whether the scalar part of the Jet f is greater than or equal to |
| // the scalar part of g. |
| // |
| // NOTE: This function does NOT set any floating-point exceptions. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline bool isgreaterequal(const Lhs& f, const Rhs& g) { |
| using internal::AsScalar; |
| return isgreaterequal(AsScalar(f), AsScalar(g)); |
| } |
| |
| // Determines if either of the scalar parts of the arguments are NaN and |
| // thus cannot be ordered with respect to each other. |
| template <typename Lhs, |
| typename Rhs, |
| std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> |
| inline bool isunordered(const Lhs& f, const Rhs& g) { |
| using internal::AsScalar; |
| return isunordered(AsScalar(f), AsScalar(g)); |
| } |
| |
| // Categorize scalar part as zero, subnormal, normal, infinite, NaN, or |
| // implementation-defined. |
| template <typename T, int N> |
| inline int fpclassify(const Jet<T, N>& f) { |
| return fpclassify(f.a); |
| } |
| |
| // Determines whether the scalar part of the argument is negative. |
| template <typename T, int N> |
| inline bool signbit(const Jet<T, N>& f) { |
| return signbit(f.a); |
| } |
| |
| // Legacy functions from the pre-C++11 days. |
| template <typename T, int N> |
| CERES_DEPRECATED_WITH_MSG( |
| "ceres::IsFinite will be removed in a future Ceres Solver release. Please " |
| "use ceres::isfinite.") |
| inline bool IsFinite(const Jet<T, N>& f) { |
| return isfinite(f); |
| } |
| |
| template <typename T, int N> |
| CERES_DEPRECATED_WITH_MSG( |
| "ceres::IsNaN will be removed in a future Ceres Solver release. Please use " |
| "ceres::isnan.") |
| inline bool IsNaN(const Jet<T, N>& f) { |
| return isnan(f); |
| } |
| |
| template <typename T, int N> |
| CERES_DEPRECATED_WITH_MSG( |
| "ceres::IsNormal will be removed in a future Ceres Solver release. Please " |
| "use ceres::isnormal.") |
| inline bool IsNormal(const Jet<T, N>& f) { |
| return isnormal(f); |
| } |
| |
| // The jet is infinite if any part of the jet is infinite. |
| template <typename T, int N> |
| CERES_DEPRECATED_WITH_MSG( |
| "ceres::IsInfinite will be removed in a future Ceres Solver release. " |
| "Please use ceres::isinf.") |
| inline bool IsInfinite(const Jet<T, N>& f) { |
| return isinf(f); |
| } |
| |
| #ifdef CERES_HAS_CPP20 |
| // Computes the linear interpolation a + t(b - a) between a and b at the value |
| // t. For arguments outside of the range 0 <= t <= 1, the values are |
| // extrapolated. |
| // |
| // Differentiating lerp(a, b, t) with respect to a, b, and t gives: |
| // |
| // d/da lerp(a, b, t) = 1 - t |
| // d/db lerp(a, b, t) = t |
| // d/dt lerp(a, b, t) = b - a |
| // |
| // with the dual representation given by |
| // |
| // lerp(a + da, b + db, t + dt) |
| // ~= lerp(a, b, t) + (1 - t) da + t db + (b - a) dt . |
| template <typename T, int N> |
| inline Jet<T, N> lerp(const Jet<T, N>& a, |
| const Jet<T, N>& b, |
| const Jet<T, N>& t) { |
| return Jet<T, N>{lerp(a.a, b.a, t.a), |
| (T(1) - t.a) * a.v + t.a * b.v + (b.a - a.a) * t.v}; |
| } |
| |
| // Computes the midpoint a + (b - a) / 2. |
| // |
| // Differentiating midpoint(a, b) with respect to a and b gives: |
| // |
| // d/da midpoint(a, b) = 1/2 |
| // d/db midpoint(a, b) = 1/2 |
| // |
| // with the dual representation given by |
| // |
| // midpoint(a + da, b + db) ~= midpoint(a, b) + (da + db) / 2 . |
| template <typename T, int N> |
| inline Jet<T, N> midpoint(const Jet<T, N>& a, const Jet<T, N>& b) { |
| Jet<T, N> result{midpoint(a.a, b.a)}; |
| // To avoid overflow in the differential, compute |
| // (da + db) / 2 using midpoint. |
| for (int i = 0; i < N; ++i) { |
| result.v[i] = midpoint(a.v[i], b.v[i]); |
| } |
| return result; |
| } |
| #endif // defined(CERES_HAS_CPP20) |
| |
| // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2) |
| // |
| // In words: the rate of change of theta is 1/r times the rate of |
| // change of (x, y) in the positive angular direction. |
| template <typename T, int N> |
| inline Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) { |
| // Note order of arguments: |
| // |
| // f = a + da |
| // g = b + db |
| |
| T const tmp = T(1.0) / (f.a * f.a + g.a * g.a); |
| return Jet<T, N>(atan2(g.a, f.a), tmp * (-g.a * f.v + f.a * g.v)); |
| } |
| |
| // Computes the square x^2 of a real number x (not the Euclidean L^2 norm as |
| // the name might suggest). |
| // |
| // NOTE: While std::norm is primarily intended for computing the squared |
| // magnitude of a std::complex<> number, the current Jet implementation does not |
| // support mixing a scalar T in its real part and std::complex<T> and in the |
| // infinitesimal. Mixed Jet support is necessary for the type decay from |
| // std::complex<T> to T (the squared magnitude of a complex number is always |
| // real) performed by std::norm. |
| // |
| // norm(x + h) ~= norm(x) + 2x h |
| template <typename T, int N> |
| inline Jet<T, N> norm(const Jet<T, N>& f) { |
| return Jet<T, N>(norm(f.a), T(2) * f.a * f.v); |
| } |
| |
| // pow -- base is a differentiable function, exponent is a constant. |
| // (a+da)^p ~= a^p + p*a^(p-1) da |
| template <typename T, int N> |
| inline Jet<T, N> pow(const Jet<T, N>& f, double g) { |
| T const tmp = g * pow(f.a, g - T(1.0)); |
| return Jet<T, N>(pow(f.a, g), tmp * f.v); |
| } |
| |
| // pow -- base is a constant, exponent is a differentiable function. |
| // We have various special cases, see the comment for pow(Jet, Jet) for |
| // analysis: |
| // |
| // 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg |
| // |
| // 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g |
| // |
| // 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg |
| // != 0, the derivatives are not defined and we return NaN. |
| |
| template <typename T, int N> |
| inline Jet<T, N> pow(T f, const Jet<T, N>& g) { |
| Jet<T, N> result; |
| |
| if (fpclassify(f) == FP_ZERO && g > 0) { |
| // Handle case 2. |
| result = Jet<T, N>(T(0.0)); |
| } else { |
| if (f < 0 && g == floor(g.a)) { // Handle case 3. |
| result = Jet<T, N>(pow(f, g.a)); |
| for (int i = 0; i < N; i++) { |
| if (fpclassify(g.v[i]) != FP_ZERO) { |
| // Return a NaN when g.v != 0. |
| result.v[i] = std::numeric_limits<T>::quiet_NaN(); |
| } |
| } |
| } else { |
| // Handle case 1. |
| T const tmp = pow(f, g.a); |
| result = Jet<T, N>(tmp, log(f) * tmp * g.v); |
| } |
| } |
| |
| return result; |
| } |
| |
| // pow -- both base and exponent are differentiable functions. This has a |
| // variety of special cases that require careful handling. |
| // |
| // 1. For f > 0: |
| // (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg) |
| // The numerical evaluation of f * log(f) for f > 0 is well behaved, even for |
| // extremely small values (e.g. 1e-99). |
| // |
| // 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0 |
| // This cases is needed because log(0) can not be evaluated in the f > 0 |
| // expression. However the function f*log(f) is well behaved around f == 0 |
| // and its limit as f-->0 is zero. |
| // |
| // 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df |
| // |
| // 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not. |
| // |
| // 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite. |
| // |
| // 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1 |
| // "because there are applications that can exploit this definition". We |
| // (arbitrarily) decree that derivatives here will be nonfinite, since that |
| // is consistent with the behavior for f == 0, g < 0 and 0 < g < 1. |
| // Practically any definition could have been justified because mathematical |
| // consistency has been lost at this point. |
| // |
| // 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df |
| // This is equivalent to the case where f is a differentiable function and g |
| // is a constant (to first order). |
| // |
| // 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are |
| // not, because any change in the value of g moves us away from the point |
| // with a real-valued answer into the region with complex-valued answers. |
| // |
| // 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite. |
| |
| template <typename T, int N> |
| inline Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) { |
| Jet<T, N> result; |
| |
| if (fpclassify(f) == FP_ZERO && g >= 1) { |
| // Handle cases 2 and 3. |
| if (g > 1) { |
| result = Jet<T, N>(T(0.0)); |
| } else { |
| result = f; |
| } |
| |
| } else { |
| if (f < 0 && g == floor(g.a)) { |
| // Handle cases 7 and 8. |
| T const tmp = g.a * pow(f.a, g.a - T(1.0)); |
| result = Jet<T, N>(pow(f.a, g.a), tmp * f.v); |
| for (int i = 0; i < N; i++) { |
| if (fpclassify(g.v[i]) != FP_ZERO) { |
| // Return a NaN when g.v != 0. |
| result.v[i] = T(std::numeric_limits<double>::quiet_NaN()); |
| } |
| } |
| } else { |
| // Handle the remaining cases. For cases 4,5,6,9 we allow the log() |
| // function to generate -HUGE_VAL or NaN, since those cases result in a |
| // nonfinite derivative. |
| T const tmp1 = pow(f.a, g.a); |
| T const tmp2 = g.a * pow(f.a, g.a - T(1.0)); |
| T const tmp3 = tmp1 * log(f.a); |
| result = Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v); |
| } |
| } |
| |
| return result; |
| } |
| |
| // Note: This has to be in the ceres namespace for argument dependent lookup to |
| // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with |
| // strange compile errors. |
| template <typename T, int N> |
| inline std::ostream& operator<<(std::ostream& s, const Jet<T, N>& z) { |
| s << "[" << z.a << " ; "; |
| for (int i = 0; i < N; ++i) { |
| s << z.v[i]; |
| if (i != N - 1) { |
| s << ", "; |
| } |
| } |
| s << "]"; |
| return s; |
| } |
| } // namespace ceres |
| |
| namespace std { |
| template <typename T, int N> |
| struct numeric_limits<ceres::Jet<T, N>> { |
| static constexpr bool is_specialized = true; |
| static constexpr bool is_signed = std::numeric_limits<T>::is_signed; |
| static constexpr bool is_integer = std::numeric_limits<T>::is_integer; |
| static constexpr bool is_exact = std::numeric_limits<T>::is_exact; |
| static constexpr bool has_infinity = std::numeric_limits<T>::has_infinity; |
| static constexpr bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN; |
| static constexpr bool has_signaling_NaN = |
| std::numeric_limits<T>::has_signaling_NaN; |
| static constexpr bool is_iec559 = std::numeric_limits<T>::is_iec559; |
| static constexpr bool is_bounded = std::numeric_limits<T>::is_bounded; |
| static constexpr bool is_modulo = std::numeric_limits<T>::is_modulo; |
| |
| static constexpr std::float_denorm_style has_denorm = |
| std::numeric_limits<T>::has_denorm; |
| static constexpr std::float_round_style round_style = |
| std::numeric_limits<T>::round_style; |
| |
| static constexpr int digits = std::numeric_limits<T>::digits; |
| static constexpr int digits10 = std::numeric_limits<T>::digits10; |
| static constexpr int max_digits10 = std::numeric_limits<T>::max_digits10; |
| static constexpr int radix = std::numeric_limits<T>::radix; |
| static constexpr int min_exponent = std::numeric_limits<T>::min_exponent; |
| static constexpr int min_exponent10 = std::numeric_limits<T>::max_exponent10; |
| static constexpr int max_exponent = std::numeric_limits<T>::max_exponent; |
| static constexpr int max_exponent10 = std::numeric_limits<T>::max_exponent10; |
| static constexpr bool traps = std::numeric_limits<T>::traps; |
| static constexpr bool tinyness_before = |
| std::numeric_limits<T>::tinyness_before; |
| |
| static constexpr ceres::Jet<T, N> min |
| CERES_PREVENT_MACRO_SUBSTITUTION() noexcept { |
| return ceres::Jet<T, N>((std::numeric_limits<T>::min)()); |
| } |
| static constexpr ceres::Jet<T, N> lowest() noexcept { |
| return ceres::Jet<T, N>(std::numeric_limits<T>::lowest()); |
| } |
| static constexpr ceres::Jet<T, N> epsilon() noexcept { |
| return ceres::Jet<T, N>(std::numeric_limits<T>::epsilon()); |
| } |
| static constexpr ceres::Jet<T, N> round_error() noexcept { |
| return ceres::Jet<T, N>(std::numeric_limits<T>::round_error()); |
| } |
| static constexpr ceres::Jet<T, N> infinity() noexcept { |
| return ceres::Jet<T, N>(std::numeric_limits<T>::infinity()); |
| } |
| static constexpr ceres::Jet<T, N> quiet_NaN() noexcept { |
| return ceres::Jet<T, N>(std::numeric_limits<T>::quiet_NaN()); |
| } |
| static constexpr ceres::Jet<T, N> signaling_NaN() noexcept { |
| return ceres::Jet<T, N>(std::numeric_limits<T>::signaling_NaN()); |
| } |
| static constexpr ceres::Jet<T, N> denorm_min() noexcept { |
| return ceres::Jet<T, N>(std::numeric_limits<T>::denorm_min()); |
| } |
| |
| static constexpr ceres::Jet<T, N> max |
| CERES_PREVENT_MACRO_SUBSTITUTION() noexcept { |
| return ceres::Jet<T, N>((std::numeric_limits<T>::max)()); |
| } |
| }; |
| |
| } // namespace std |
| |
| namespace Eigen { |
| |
| // Creating a specialization of NumTraits enables placing Jet objects inside |
| // Eigen arrays, getting all the goodness of Eigen combined with autodiff. |
| template <typename T, int N> |
| struct NumTraits<ceres::Jet<T, N>> { |
| using Real = ceres::Jet<T, N>; |
| using NonInteger = ceres::Jet<T, N>; |
| using Nested = ceres::Jet<T, N>; |
| using Literal = ceres::Jet<T, N>; |
| |
| static typename ceres::Jet<T, N> dummy_precision() { |
| return ceres::Jet<T, N>(1e-12); |
| } |
| |
| static inline Real epsilon() { |
| return Real(std::numeric_limits<T>::epsilon()); |
| } |
| |
| static inline int digits10() { return NumTraits<T>::digits10(); } |
| |
| enum { |
| IsComplex = 0, |
| IsInteger = 0, |
| IsSigned, |
| ReadCost = 1, |
| AddCost = 1, |
| // For Jet types, multiplication is more expensive than addition. |
| MulCost = 3, |
| HasFloatingPoint = 1, |
| RequireInitialization = 1 |
| }; |
| |
| template <bool Vectorized> |
| struct Div { |
| enum { |
| #if defined(EIGEN_VECTORIZE_AVX) |
| AVX = true, |
| #else |
| AVX = false, |
| #endif |
| |
| // Assuming that for Jets, division is as expensive as |
| // multiplication. |
| Cost = 3 |
| }; |
| }; |
| |
| static inline Real highest() { return Real((std::numeric_limits<T>::max)()); } |
| static inline Real lowest() { return Real(-(std::numeric_limits<T>::max)()); } |
| }; |
| |
| // Specifying the return type of binary operations between Jets and scalar types |
| // allows you to perform matrix/array operations with Eigen matrices and arrays |
| // such as addition, subtraction, multiplication, and division where one Eigen |
| // matrix/array is of type Jet and the other is a scalar type. This improves |
| // performance by using the optimized scalar-to-Jet binary operations but |
| // is only available on Eigen versions >= 3.3 |
| template <typename BinaryOp, typename T, int N> |
| struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> { |
| using ReturnType = ceres::Jet<T, N>; |
| }; |
| template <typename BinaryOp, typename T, int N> |
| struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> { |
| using ReturnType = ceres::Jet<T, N>; |
| }; |
| |
| } // namespace Eigen |
| |
| #endif // CERES_PUBLIC_JET_H_ |