| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <memory> |
| #include <random> |
| |
| #include "benchmark/benchmark.h" |
| #include "ceres/context_impl.h" |
| #include "ceres/fake_bundle_adjustment_jacobian.h" |
| #include "ceres/partitioned_matrix_view.h" |
| |
| constexpr int kNumCameras = 1000; |
| constexpr int kNumPoints = 10000; |
| constexpr int kCameraSize = 6; |
| constexpr int kPointSize = 3; |
| constexpr double kVisibility = 0.1; |
| |
| namespace ceres::internal { |
| |
| static void BM_PatitionedViewRightMultiplyAndAccumulateE_Static( |
| benchmark::State& state) { |
| const int num_threads = state.range(0); |
| std::mt19937 prng; |
| auto [partitioned_view, jacobian] = |
| CreateFakeBundleAdjustmentPartitionedJacobian<kPointSize, kCameraSize>( |
| kNumCameras, kNumPoints, kVisibility, prng); |
| |
| ContextImpl context; |
| context.EnsureMinimumThreads(num_threads); |
| |
| Vector x(partitioned_view->num_cols_e()); |
| Vector y(partitioned_view->num_rows()); |
| x.setRandom(); |
| y.setRandom(); |
| double sum = 0; |
| for (auto _ : state) { |
| partitioned_view->RightMultiplyAndAccumulateE( |
| x.data(), y.data(), &context, num_threads); |
| sum += y.norm(); |
| } |
| CHECK_NE(sum, 0.0); |
| } |
| BENCHMARK(BM_PatitionedViewRightMultiplyAndAccumulateE_Static) |
| ->Arg(1) |
| ->Arg(2) |
| ->Arg(4) |
| ->Arg(8) |
| ->Arg(16); |
| |
| static void BM_PatitionedViewRightMultiplyAndAccumulateE_Dynamic( |
| benchmark::State& state) { |
| std::mt19937 prng; |
| auto [partitioned_view, jacobian] = |
| CreateFakeBundleAdjustmentPartitionedJacobian( |
| kNumCameras, kNumPoints, kCameraSize, kPointSize, kVisibility, prng); |
| |
| Vector x(partitioned_view->num_cols_e()); |
| Vector y(partitioned_view->num_rows()); |
| x.setRandom(); |
| y.setRandom(); |
| double sum = 0; |
| for (auto _ : state) { |
| partitioned_view->RightMultiplyAndAccumulateE(x.data(), y.data()); |
| sum += y.norm(); |
| } |
| CHECK_NE(sum, 0.0); |
| } |
| BENCHMARK(BM_PatitionedViewRightMultiplyAndAccumulateE_Dynamic); |
| |
| static void BM_PatitionedViewRightMultiplyAndAccumulateF_Static( |
| benchmark::State& state) { |
| const int num_threads = state.range(0); |
| std::mt19937 prng; |
| auto [partitioned_view, jacobian] = |
| CreateFakeBundleAdjustmentPartitionedJacobian<kPointSize, kCameraSize>( |
| kNumCameras, kNumPoints, kVisibility, prng); |
| |
| ContextImpl context; |
| context.EnsureMinimumThreads(num_threads); |
| |
| Vector x(partitioned_view->num_cols_f()); |
| Vector y(partitioned_view->num_rows()); |
| x.setRandom(); |
| y.setRandom(); |
| double sum = 0; |
| for (auto _ : state) { |
| partitioned_view->RightMultiplyAndAccumulateF( |
| x.data(), y.data(), &context, num_threads); |
| sum += y.norm(); |
| } |
| CHECK_NE(sum, 0.0); |
| } |
| BENCHMARK(BM_PatitionedViewRightMultiplyAndAccumulateF_Static) |
| ->Arg(1) |
| ->Arg(2) |
| ->Arg(4) |
| ->Arg(8) |
| ->Arg(16); |
| |
| static void BM_PatitionedViewRightMultiplyAndAccumulateF_Dynamic( |
| benchmark::State& state) { |
| std::mt19937 prng; |
| auto [partitioned_view, jacobian] = |
| CreateFakeBundleAdjustmentPartitionedJacobian( |
| kNumCameras, kNumPoints, kCameraSize, kPointSize, kVisibility, prng); |
| |
| Vector x(partitioned_view->num_cols_f()); |
| Vector y(partitioned_view->num_rows()); |
| x.setRandom(); |
| y.setRandom(); |
| double sum = 0; |
| for (auto _ : state) { |
| partitioned_view->RightMultiplyAndAccumulateF(x.data(), y.data()); |
| sum += y.norm(); |
| } |
| CHECK_NE(sum, 0.0); |
| } |
| BENCHMARK(BM_PatitionedViewRightMultiplyAndAccumulateF_Dynamic); |
| |
| } // namespace ceres::internal |
| |
| BENCHMARK_MAIN(); |