| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Bicubic interpolation with automatic differentiation |
| // |
| // We will use estimation of 2d shift as a sample problem for bicubic |
| // interpolation. |
| // |
| // Let us define f(x, y) = x * x - y * x + y * y |
| // And optimize cost function sum_i [f(x_i + s_x, y_i + s_y) - v_i]^2 |
| // |
| // Bicubic interpolation of f(x, y) will be exact, thus we can expect close to |
| // perfect convergence |
| |
| #include <utility> |
| |
| #include "ceres/ceres.h" |
| #include "ceres/cubic_interpolation.h" |
| #include "glog/logging.h" |
| |
| using Grid = ceres::Grid2D<double>; |
| using Interpolator = ceres::BiCubicInterpolator<Grid>; |
| |
| // Cost-function using autodiff interface of BiCubicInterpolator |
| struct AutoDiffBiCubicCost { |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW; |
| |
| template <typename T> |
| bool operator()(const T* s, T* residual) const { |
| using Vector2T = Eigen::Matrix<T, 2, 1>; |
| Eigen::Map<const Vector2T> shift(s); |
| |
| const Vector2T point = point_ + shift; |
| |
| T v; |
| interpolator_.Evaluate(point.y(), point.x(), &v); |
| |
| *residual = v - value_; |
| return true; |
| } |
| |
| AutoDiffBiCubicCost(const Interpolator& interpolator, |
| Eigen::Vector2d point, |
| double value) |
| : point_(std::move(point)), value_(value), interpolator_(interpolator) {} |
| |
| static ceres::CostFunction* Create(const Interpolator& interpolator, |
| const Eigen::Vector2d& point, |
| double value) { |
| return new ceres::AutoDiffCostFunction<AutoDiffBiCubicCost, 1, 2>( |
| new AutoDiffBiCubicCost(interpolator, point, value)); |
| } |
| |
| const Eigen::Vector2d point_; |
| const double value_; |
| const Interpolator& interpolator_; |
| }; |
| |
| // Function for input data generation |
| static double f(const double& x, const double& y) { |
| return x * x - y * x + y * y; |
| } |
| |
| int main(int argc, char** argv) { |
| google::InitGoogleLogging(argv[0]); |
| // Problem sizes |
| const int kGridRowsHalf = 9; |
| const int kGridColsHalf = 11; |
| const int kGridRows = 2 * kGridRowsHalf + 1; |
| const int kGridCols = 2 * kGridColsHalf + 1; |
| const int kPoints = 4; |
| |
| const Eigen::Vector2d shift(1.234, 2.345); |
| const std::array<Eigen::Vector2d, kPoints> points = { |
| Eigen::Vector2d{-2., -3.}, |
| Eigen::Vector2d{-2., 3.}, |
| Eigen::Vector2d{2., 3.}, |
| Eigen::Vector2d{2., -3.}}; |
| |
| // Data is a row-major array of kGridRows x kGridCols values of function |
| // f(x, y) on the grid, with x in {-kGridColsHalf, ..., +kGridColsHalf}, |
| // and y in {-kGridRowsHalf, ..., +kGridRowsHalf} |
| double data[kGridRows * kGridCols]; |
| for (int i = 0; i < kGridRows; ++i) { |
| for (int j = 0; j < kGridCols; ++j) { |
| // Using row-major order |
| int index = i * kGridCols + j; |
| double y = i - kGridRowsHalf; |
| double x = j - kGridColsHalf; |
| |
| data[index] = f(x, y); |
| } |
| } |
| const Grid grid(data, |
| -kGridRowsHalf, |
| kGridRowsHalf + 1, |
| -kGridColsHalf, |
| kGridColsHalf + 1); |
| const Interpolator interpolator(grid); |
| |
| Eigen::Vector2d shift_estimate(3.1415, 1.337); |
| |
| ceres::Problem problem; |
| problem.AddParameterBlock(shift_estimate.data(), 2); |
| |
| for (const auto& p : points) { |
| const Eigen::Vector2d shifted = p + shift; |
| |
| const double v = f(shifted.x(), shifted.y()); |
| problem.AddResidualBlock(AutoDiffBiCubicCost::Create(interpolator, p, v), |
| nullptr, |
| shift_estimate.data()); |
| } |
| |
| ceres::Solver::Options options; |
| options.minimizer_progress_to_stdout = true; |
| |
| ceres::Solver::Summary summary; |
| ceres::Solve(options, &problem, &summary); |
| std::cout << summary.BriefReport() << '\n'; |
| |
| std::cout << "Bicubic interpolation with automatic derivatives:\n"; |
| std::cout << "Estimated shift: " << shift_estimate.transpose() |
| << ", ground-truth: " << shift.transpose() |
| << " (error: " << (shift_estimate - shift).transpose() << ")" |
| << std::endl; |
| |
| CHECK_LT((shift_estimate - shift).norm(), 1e-9); |
| return 0; |
| } |