| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: strandmark@google.com (Petter Strandmark) |
| |
| #ifndef CERES_INTERNAL_CXSPARSE_H_ |
| #define CERES_INTERNAL_CXSPARSE_H_ |
| |
| // This include must come before any #ifndef check on Ceres compile options. |
| #include "ceres/internal/port.h" |
| |
| #ifndef CERES_NO_CXSPARSE |
| |
| #include <string> |
| #include <vector> |
| |
| #include "ceres/linear_solver.h" |
| #include "ceres/sparse_cholesky.h" |
| #include "cs.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class CompressedRowSparseMatrix; |
| class TripletSparseMatrix; |
| |
| // This object provides access to solving linear systems using Cholesky |
| // factorization with a known symbolic factorization. This features does not |
| // explicity exist in CXSparse. The methods in the class are nonstatic because |
| // the class manages internal scratch space. |
| class CXSparse { |
| public: |
| CXSparse(); |
| ~CXSparse(); |
| |
| // Solve the system lhs * solution = rhs in place by using an |
| // approximate minimum degree fill reducing ordering. |
| bool SolveCholesky(cs_di* lhs, double* rhs_and_solution); |
| |
| // Solves a linear system given its symbolic and numeric factorization. |
| void Solve(cs_dis* symbolic_factor, |
| csn* numeric_factor, |
| double* rhs_and_solution); |
| |
| // Compute the numeric Cholesky factorization of A, given its |
| // symbolic factorization. |
| // |
| // Caller owns the result. |
| csn* Cholesky(cs_di* A, cs_dis* symbolic_factor); |
| |
| // Creates a sparse matrix from a compressed-column form. No memory is |
| // allocated or copied; the structure A is filled out with info from the |
| // argument. |
| cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); |
| |
| // Creates a new matrix from a triplet form. Deallocate the returned matrix |
| // with Free. May return NULL if the compression or allocation fails. |
| cs_di* CreateSparseMatrix(TripletSparseMatrix* A); |
| |
| // B = A' |
| // |
| // The returned matrix should be deallocated with Free when not used |
| // anymore. |
| cs_di* TransposeMatrix(cs_di* A); |
| |
| // C = A * B |
| // |
| // The returned matrix should be deallocated with Free when not used |
| // anymore. |
| cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B); |
| |
| // Computes a symbolic factorization of A that can be used in SolveCholesky. |
| // |
| // The returned matrix should be deallocated with Free when not used anymore. |
| cs_dis* AnalyzeCholesky(cs_di* A); |
| |
| // Computes a symbolic factorization of A that can be used in |
| // SolveCholesky, but does not compute a fill-reducing ordering. |
| // |
| // The returned matrix should be deallocated with Free when not used anymore. |
| cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A); |
| |
| // Computes a symbolic factorization of A that can be used in |
| // SolveCholesky. The difference from AnalyzeCholesky is that this |
| // function first detects the block sparsity of the matrix using |
| // information about the row and column blocks and uses this block |
| // sparse matrix to find a fill-reducing ordering. This ordering is |
| // then used to find a symbolic factorization. This can result in a |
| // significant performance improvement AnalyzeCholesky on block |
| // sparse matrices. |
| // |
| // The returned matrix should be deallocated with Free when not used |
| // anymore. |
| cs_dis* BlockAnalyzeCholesky(cs_di* A, |
| const std::vector<int>& row_blocks, |
| const std::vector<int>& col_blocks); |
| |
| // Compute an fill-reducing approximate minimum degree ordering of |
| // the matrix A. ordering should be non-NULL and should point to |
| // enough memory to hold the ordering for the rows of A. |
| void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering); |
| |
| void Free(cs_di* sparse_matrix); |
| void Free(cs_dis* symbolic_factorization); |
| void Free(csn* numeric_factorization); |
| |
| private: |
| // Cached scratch space |
| CS_ENTRY* scratch_; |
| int scratch_size_; |
| }; |
| |
| // An implementation of SparseCholesky interface using the CXSparse |
| // library. |
| class CXSparseCholesky : public SparseCholesky { |
| public: |
| // Factory |
| static CXSparseCholesky* Create(const OrderingType ordering_type); |
| |
| // SparseCholesky interface. |
| virtual ~CXSparseCholesky(); |
| virtual CompressedRowSparseMatrix::StorageType StorageType() const; |
| virtual LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, |
| std::string* message); |
| virtual LinearSolverTerminationType Solve(const double* rhs, |
| double* solution, |
| std::string* message); |
| |
| private: |
| CXSparseCholesky(const OrderingType ordering_type); |
| void FreeSymbolicFactorization(); |
| void FreeNumericFactorization(); |
| |
| const OrderingType ordering_type_; |
| CXSparse cs_; |
| cs_dis* symbolic_factor_; |
| csn* numeric_factor_; |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #else // CERES_NO_CXSPARSE |
| |
| typedef void cs_dis; |
| |
| class CXSparse { |
| public: |
| void Free(void* arg) {} |
| }; |
| #endif // CERES_NO_CXSPARSE |
| |
| #endif // CERES_INTERNAL_CXSPARSE_H_ |