|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  |  | 
|  | #include <numeric> | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/crs_matrix.h" | 
|  | #include "ceres/cxsparse.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/random.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { | 
|  | EXPECT_EQ(a->num_rows(), b->num_rows()); | 
|  | EXPECT_EQ(a->num_cols(), b->num_cols()); | 
|  |  | 
|  | int num_rows = a->num_rows(); | 
|  | int num_cols = a->num_cols(); | 
|  |  | 
|  | for (int i = 0; i < num_cols; ++i) { | 
|  | Vector x = Vector::Zero(num_cols); | 
|  | x(i) = 1.0; | 
|  |  | 
|  | Vector y_a = Vector::Zero(num_rows); | 
|  | Vector y_b = Vector::Zero(num_rows); | 
|  |  | 
|  | a->RightMultiply(x.data(), y_a.data()); | 
|  | b->RightMultiply(x.data(), y_b.data()); | 
|  |  | 
|  | EXPECT_EQ((y_a - y_b).norm(), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | class CompressedRowSparseMatrixTest : public ::testing::Test { | 
|  | protected : | 
|  | virtual void SetUp() { | 
|  | scoped_ptr<LinearLeastSquaresProblem> problem( | 
|  | CreateLinearLeastSquaresProblemFromId(1)); | 
|  |  | 
|  | CHECK_NOTNULL(problem.get()); | 
|  |  | 
|  | tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
|  | crsm.reset(new CompressedRowSparseMatrix(*tsm)); | 
|  |  | 
|  | num_rows = tsm->num_rows(); | 
|  | num_cols = tsm->num_cols(); | 
|  |  | 
|  | vector<int>* row_blocks = crsm->mutable_row_blocks(); | 
|  | row_blocks->resize(num_rows); | 
|  | std::fill(row_blocks->begin(), row_blocks->end(), 1); | 
|  |  | 
|  | vector<int>* col_blocks = crsm->mutable_col_blocks(); | 
|  | col_blocks->resize(num_cols); | 
|  | std::fill(col_blocks->begin(), col_blocks->end(), 1); | 
|  | } | 
|  |  | 
|  | int num_rows; | 
|  | int num_cols; | 
|  |  | 
|  | scoped_ptr<TripletSparseMatrix> tsm; | 
|  | scoped_ptr<CompressedRowSparseMatrix> crsm; | 
|  | }; | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, RightMultiply) { | 
|  | CompareMatrices(tsm.get(), crsm.get()); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) { | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | Vector a = Vector::Zero(num_rows); | 
|  | a(i) = 1.0; | 
|  |  | 
|  | Vector b1 = Vector::Zero(num_cols); | 
|  | Vector b2 = Vector::Zero(num_cols); | 
|  |  | 
|  | tsm->LeftMultiply(a.data(), b1.data()); | 
|  | crsm->LeftMultiply(a.data(), b2.data()); | 
|  |  | 
|  | EXPECT_EQ((b1 - b2).norm(), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) { | 
|  | Vector b1 = Vector::Zero(num_cols); | 
|  | Vector b2 = Vector::Zero(num_cols); | 
|  |  | 
|  | tsm->SquaredColumnNorm(b1.data()); | 
|  | crsm->SquaredColumnNorm(b2.data()); | 
|  |  | 
|  | EXPECT_EQ((b1 - b2).norm(), 0); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, Scale) { | 
|  | Vector scale(num_cols); | 
|  | for (int i = 0; i < num_cols; ++i) { | 
|  | scale(i) = i + 1; | 
|  | } | 
|  |  | 
|  | tsm->ScaleColumns(scale.data()); | 
|  | crsm->ScaleColumns(scale.data()); | 
|  | CompareMatrices(tsm.get(), crsm.get()); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, DeleteRows) { | 
|  | // Clear the row and column blocks as these are purely scalar tests. | 
|  | crsm->mutable_row_blocks()->clear(); | 
|  | crsm->mutable_col_blocks()->clear(); | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | tsm->Resize(num_rows - i, num_cols); | 
|  | crsm->DeleteRows(crsm->num_rows() - tsm->num_rows()); | 
|  | CompareMatrices(tsm.get(), crsm.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, AppendRows) { | 
|  | // Clear the row and column blocks as these are purely scalar tests. | 
|  | crsm->mutable_row_blocks()->clear(); | 
|  | crsm->mutable_col_blocks()->clear(); | 
|  |  | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | TripletSparseMatrix tsm_appendage(*tsm); | 
|  | tsm_appendage.Resize(i, num_cols); | 
|  |  | 
|  | tsm->AppendRows(tsm_appendage); | 
|  | CompressedRowSparseMatrix crsm_appendage(tsm_appendage); | 
|  | crsm->AppendRows(crsm_appendage); | 
|  |  | 
|  | CompareMatrices(tsm.get(), crsm.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) { | 
|  | int num_diagonal_rows = crsm->num_cols(); | 
|  |  | 
|  | scoped_array<double> diagonal(new double[num_diagonal_rows]); | 
|  | for (int i = 0; i < num_diagonal_rows; ++i) { | 
|  | diagonal[i] = i; | 
|  | } | 
|  |  | 
|  | vector<int> row_and_column_blocks; | 
|  | row_and_column_blocks.push_back(1); | 
|  | row_and_column_blocks.push_back(2); | 
|  | row_and_column_blocks.push_back(2); | 
|  |  | 
|  | const vector<int> pre_row_blocks = crsm->row_blocks(); | 
|  | const vector<int> pre_col_blocks = crsm->col_blocks(); | 
|  |  | 
|  | scoped_ptr<CompressedRowSparseMatrix> appendage( | 
|  | CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
|  | diagonal.get(), row_and_column_blocks)); | 
|  | LOG(INFO) << appendage->row_blocks().size(); | 
|  |  | 
|  | crsm->AppendRows(*appendage); | 
|  |  | 
|  | const vector<int> post_row_blocks = crsm->row_blocks(); | 
|  | const vector<int> post_col_blocks = crsm->col_blocks(); | 
|  |  | 
|  | vector<int> expected_row_blocks = pre_row_blocks; | 
|  | expected_row_blocks.insert(expected_row_blocks.end(), | 
|  | row_and_column_blocks.begin(), | 
|  | row_and_column_blocks.end()); | 
|  |  | 
|  | vector<int> expected_col_blocks = pre_col_blocks; | 
|  |  | 
|  | EXPECT_EQ(expected_row_blocks, crsm->row_blocks()); | 
|  | EXPECT_EQ(expected_col_blocks, crsm->col_blocks()); | 
|  |  | 
|  | crsm->DeleteRows(num_diagonal_rows); | 
|  | EXPECT_EQ(crsm->row_blocks(), pre_row_blocks); | 
|  | EXPECT_EQ(crsm->col_blocks(), pre_col_blocks); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) { | 
|  | Matrix tsm_dense; | 
|  | Matrix crsm_dense; | 
|  |  | 
|  | tsm->ToDenseMatrix(&tsm_dense); | 
|  | crsm->ToDenseMatrix(&crsm_dense); | 
|  |  | 
|  | EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) { | 
|  | CRSMatrix crs_matrix; | 
|  | crsm->ToCRSMatrix(&crs_matrix); | 
|  | EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows); | 
|  | EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols); | 
|  | EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size()); | 
|  | EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size()); | 
|  | EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size()); | 
|  |  | 
|  | for (int i = 0; i < crsm->num_rows() + 1; ++i) { | 
|  | EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < crsm->num_nonzeros(); ++i) { | 
|  | EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]); | 
|  | EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) { | 
|  | vector<int> blocks; | 
|  | blocks.push_back(1); | 
|  | blocks.push_back(2); | 
|  | blocks.push_back(2); | 
|  |  | 
|  | Vector diagonal(5); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | diagonal(i) = i + 1; | 
|  | } | 
|  |  | 
|  | scoped_ptr<CompressedRowSparseMatrix> matrix( | 
|  | CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
|  | diagonal.data(), blocks)); | 
|  |  | 
|  | EXPECT_EQ(matrix->num_rows(), 5); | 
|  | EXPECT_EQ(matrix->num_cols(), 5); | 
|  | EXPECT_EQ(matrix->num_nonzeros(), 9); | 
|  | EXPECT_EQ(blocks, matrix->row_blocks()); | 
|  | EXPECT_EQ(blocks, matrix->col_blocks()); | 
|  |  | 
|  | Vector x(5); | 
|  | Vector y(5); | 
|  |  | 
|  | x.setOnes(); | 
|  | y.setZero(); | 
|  | matrix->RightMultiply(x.data(), y.data()); | 
|  | for (int i = 0; i < diagonal.size(); ++i) { | 
|  | EXPECT_EQ(y[i], diagonal[i]); | 
|  | } | 
|  |  | 
|  | y.setZero(); | 
|  | matrix->LeftMultiply(x.data(), y.data()); | 
|  | for (int i = 0; i < diagonal.size(); ++i) { | 
|  | EXPECT_EQ(y[i], diagonal[i]); | 
|  | } | 
|  |  | 
|  | Matrix dense; | 
|  | matrix->ToDenseMatrix(&dense); | 
|  | EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0); | 
|  | } | 
|  |  | 
|  | class SolveLowerTriangularTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() { | 
|  | matrix_.reset(new CompressedRowSparseMatrix(4, 4, 7)); | 
|  | int* rows = matrix_->mutable_rows(); | 
|  | int* cols = matrix_->mutable_cols(); | 
|  | double* values = matrix_->mutable_values(); | 
|  |  | 
|  | rows[0] = 0; | 
|  | cols[0] = 0; | 
|  | values[0] = 0.50754; | 
|  |  | 
|  | rows[1] = 1; | 
|  | cols[1] = 1; | 
|  | values[1] = 0.80483; | 
|  |  | 
|  | rows[2] = 2; | 
|  | cols[2] = 1; | 
|  | values[2] = 0.14120; | 
|  | cols[3] = 2; | 
|  | values[3] = 0.3; | 
|  |  | 
|  | rows[3] = 4; | 
|  | cols[4] = 0; | 
|  | values[4] = 0.77696; | 
|  | cols[5] = 1; | 
|  | values[5] = 0.41860; | 
|  | cols[6] = 3; | 
|  | values[6] = 0.88979; | 
|  |  | 
|  | rows[4] = 7; | 
|  | } | 
|  |  | 
|  | scoped_ptr<CompressedRowSparseMatrix> matrix_; | 
|  | }; | 
|  |  | 
|  | TEST_F(SolveLowerTriangularTest, SolveInPlace) { | 
|  | double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
|  | double expected[] = {1.970288,  1.242498,  6.081864, -0.057255}; | 
|  | matrix_->SolveLowerTriangularInPlace(rhs_and_solution); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SolveLowerTriangularTest, TransposeSolveInPlace) { | 
|  | double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
|  | const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477}; | 
|  |  | 
|  | matrix_->SolveLowerTriangularTransposeInPlace(rhs_and_solution); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseMatrix, Transpose) { | 
|  | //  0  1  0  2  3  0 | 
|  | //  4  6  7  0  0  8 | 
|  | //  9 10  0 11 12  0 | 
|  | // 13  0 14 15  9  0 | 
|  | //  0 16 17  0  0  0 | 
|  |  | 
|  | // Block structure: | 
|  | //  A  A  A  A  B  B | 
|  | //  A  A  A  A  B  B | 
|  | //  A  A  A  A  B  B | 
|  | //  C  C  C  C  D  D | 
|  | //  C  C  C  C  D  D | 
|  | //  C  C  C  C  D  D | 
|  |  | 
|  | CompressedRowSparseMatrix matrix(5, 6, 30); | 
|  | int* rows = matrix.mutable_rows(); | 
|  | int* cols = matrix.mutable_cols(); | 
|  | double* values = matrix.mutable_values(); | 
|  | matrix.mutable_row_blocks()->push_back(3); | 
|  | matrix.mutable_row_blocks()->push_back(3); | 
|  | matrix.mutable_col_blocks()->push_back(4); | 
|  | matrix.mutable_col_blocks()->push_back(2); | 
|  |  | 
|  | rows[0] = 0; | 
|  | cols[0] = 1; | 
|  | cols[1] = 3; | 
|  | cols[2] = 4; | 
|  |  | 
|  | rows[1] = 3; | 
|  | cols[3] = 0; | 
|  | cols[4] = 1; | 
|  | cols[5] = 2; | 
|  | cols[6] = 5; | 
|  |  | 
|  |  | 
|  | rows[2] = 7; | 
|  | cols[7] = 0; | 
|  | cols[8] = 1; | 
|  | cols[9] = 3; | 
|  | cols[10] = 4; | 
|  |  | 
|  | rows[3] = 11; | 
|  | cols[11] = 0; | 
|  | cols[12] = 2; | 
|  | cols[13] = 3; | 
|  | cols[14] = 4; | 
|  |  | 
|  | rows[4] = 15; | 
|  | cols[15] = 1; | 
|  | cols[16] = 2; | 
|  | rows[5] = 17; | 
|  |  | 
|  | std::copy(values, values + 17, cols); | 
|  |  | 
|  | scoped_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose()); | 
|  |  | 
|  | ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size()); | 
|  | for (int i = 0; i < transpose->row_blocks().size(); ++i) { | 
|  | EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]); | 
|  | } | 
|  |  | 
|  | ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size()); | 
|  | for (int i = 0; i < transpose->col_blocks().size(); ++i) { | 
|  | EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]); | 
|  | } | 
|  |  | 
|  | Matrix dense_matrix; | 
|  | matrix.ToDenseMatrix(&dense_matrix); | 
|  |  | 
|  | Matrix dense_transpose; | 
|  | transpose->ToDenseMatrix(&dense_transpose); | 
|  | EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  |  | 
|  | struct RandomMatrixOptions { | 
|  | int num_row_blocks; | 
|  | int min_row_block_size; | 
|  | int max_row_block_size; | 
|  | int num_col_blocks; | 
|  | int min_col_block_size; | 
|  | int max_col_block_size; | 
|  | double block_density; | 
|  | }; | 
|  |  | 
|  | CompressedRowSparseMatrix* CreateRandomCompressedRowSparseMatrix( | 
|  | const RandomMatrixOptions& options) { | 
|  | vector<int> row_blocks; | 
|  | for (int i = 0; i < options.num_row_blocks; ++i) { | 
|  | const int delta_block_size = | 
|  | Uniform(options.max_row_block_size - options.min_row_block_size); | 
|  | row_blocks.push_back(options.min_row_block_size + delta_block_size); | 
|  | } | 
|  |  | 
|  | vector<int> col_blocks; | 
|  | for (int i = 0; i < options.num_col_blocks; ++i) { | 
|  | const int delta_block_size = | 
|  | Uniform(options.max_col_block_size - options.min_col_block_size); | 
|  | col_blocks.push_back(options.min_col_block_size + delta_block_size); | 
|  | } | 
|  |  | 
|  | vector<int> rows; | 
|  | vector<int> cols; | 
|  | vector<double> values; | 
|  |  | 
|  | while (values.size() == 0) { | 
|  | int row_block_begin = 0; | 
|  | for (int r = 0; r < options.num_row_blocks; ++r) { | 
|  | int col_block_begin = 0; | 
|  | for (int c = 0; c < options.num_col_blocks; ++c) { | 
|  | if (RandDouble() <= options.block_density) { | 
|  | for (int i = 0; i < row_blocks[r]; ++i) { | 
|  | for (int j = 0; j < col_blocks[c]; ++j) { | 
|  | rows.push_back(row_block_begin + i); | 
|  | cols.push_back(col_block_begin + j); | 
|  | values.push_back(RandNormal()); | 
|  | } | 
|  | } | 
|  | } | 
|  | col_block_begin += col_blocks[c]; | 
|  | } | 
|  | row_block_begin += row_blocks[r]; | 
|  | } | 
|  | } | 
|  |  | 
|  | const int num_rows = std::accumulate(row_blocks.begin(), row_blocks.end(), 0); | 
|  | const int num_cols = std::accumulate(col_blocks.begin(), col_blocks.end(), 0); | 
|  | const int num_nonzeros = values.size(); | 
|  |  | 
|  | TripletSparseMatrix tsm(num_rows, num_cols, num_nonzeros); | 
|  | std::copy(rows.begin(), rows.end(), tsm.mutable_rows()); | 
|  | std::copy(cols.begin(), cols.end(), tsm.mutable_cols()); | 
|  | std::copy(values.begin(), values.end(), tsm.mutable_values()); | 
|  | tsm.set_num_nonzeros(num_nonzeros); | 
|  | CompressedRowSparseMatrix* matrix = new CompressedRowSparseMatrix(tsm); | 
|  | (*matrix->mutable_row_blocks())  = row_blocks; | 
|  | (*matrix->mutable_col_blocks())  = col_blocks; | 
|  | return matrix; | 
|  | } | 
|  |  | 
|  | void ToDenseMatrix(const cs_di* matrix, Matrix* dense_matrix) { | 
|  | dense_matrix->resize(matrix->m, matrix->n); | 
|  | dense_matrix->setZero(); | 
|  |  | 
|  | for (int c = 0; c < matrix->n; ++c) { | 
|  | for (int idx = matrix->p[c]; idx < matrix->p[c + 1]; ++idx) { | 
|  | const int r = matrix->i[idx]; | 
|  | (*dense_matrix)(r, c) = matrix->x[idx]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseMatrix, ComputeOuterProduct) { | 
|  | // "Randomly generated seed." | 
|  | SetRandomState(29823); | 
|  | int kMaxNumRowBlocks = 10; | 
|  | int kMaxNumColBlocks = 10; | 
|  | int kNumTrials = 10; | 
|  |  | 
|  | CXSparse cxsparse; | 
|  | const double kTolerance = 1e-18; | 
|  |  | 
|  | // Create a random matrix, compute its outer product using CXSParse | 
|  | // and ComputeOuterProduct. Convert both matrices to dense matrices | 
|  | // and compare their upper triangular parts. They should be within | 
|  | // kTolerance of each other. | 
|  | for (int num_row_blocks = 1; | 
|  | num_row_blocks < kMaxNumRowBlocks; | 
|  | ++num_row_blocks) { | 
|  | for (int num_col_blocks = 1; | 
|  | num_col_blocks < kMaxNumColBlocks; | 
|  | ++num_col_blocks) { | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | RandomMatrixOptions options; | 
|  | options.num_row_blocks = num_row_blocks; | 
|  | options.num_col_blocks = num_col_blocks; | 
|  | options.min_row_block_size = 1; | 
|  | options.max_row_block_size = 5; | 
|  | options.min_col_block_size = 1; | 
|  | options.max_col_block_size = 10; | 
|  | options.block_density = std::max(0.1, RandDouble()); | 
|  |  | 
|  | VLOG(2) << "num row blocks: " << options.num_row_blocks; | 
|  | VLOG(2) << "num col blocks: " << options.num_col_blocks; | 
|  | VLOG(2) << "min row block size: " << options.min_row_block_size; | 
|  | VLOG(2) << "max row block size: " << options.max_row_block_size; | 
|  | VLOG(2) << "min col block size: " << options.min_col_block_size; | 
|  | VLOG(2) << "max col block size: " << options.max_col_block_size; | 
|  | VLOG(2) << "block density: " << options.block_density; | 
|  |  | 
|  | scoped_ptr<CompressedRowSparseMatrix> matrix( | 
|  | CreateRandomCompressedRowSparseMatrix(options)); | 
|  |  | 
|  | cs_di cs_matrix_transpose = | 
|  | cxsparse.CreateSparseMatrixTransposeView(matrix.get()); | 
|  | cs_di* cs_matrix = cxsparse.TransposeMatrix(&cs_matrix_transpose); | 
|  | cs_di* expected_outer_product = | 
|  | cxsparse.MatrixMatrixMultiply(&cs_matrix_transpose, cs_matrix); | 
|  |  | 
|  | vector<int> program; | 
|  | scoped_ptr<CompressedRowSparseMatrix> outer_product( | 
|  | CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( | 
|  | *matrix, &program)); | 
|  | CompressedRowSparseMatrix::ComputeOuterProduct(*matrix, | 
|  | program, | 
|  | outer_product.get()); | 
|  |  | 
|  | cs_di actual_outer_product = | 
|  | cxsparse.CreateSparseMatrixTransposeView(outer_product.get()); | 
|  |  | 
|  | ASSERT_EQ(actual_outer_product.m, actual_outer_product.n); | 
|  | ASSERT_EQ(expected_outer_product->m, expected_outer_product->n); | 
|  | ASSERT_EQ(actual_outer_product.m, expected_outer_product->m); | 
|  |  | 
|  | Matrix actual_matrix; | 
|  | Matrix expected_matrix; | 
|  |  | 
|  | ToDenseMatrix(expected_outer_product, &expected_matrix); | 
|  | expected_matrix.triangularView<Eigen::StrictlyLower>().setZero(); | 
|  |  | 
|  | ToDenseMatrix(&actual_outer_product, &actual_matrix); | 
|  | const double diff_norm = | 
|  | (actual_matrix - expected_matrix).norm() / expected_matrix.norm(); | 
|  | ASSERT_NEAR(diff_norm, 0.0, kTolerance) | 
|  | << "expected: \n" | 
|  | << expected_matrix | 
|  | << "\nactual: \n" | 
|  | << actual_matrix; | 
|  |  | 
|  | cxsparse.Free(cs_matrix); | 
|  | cxsparse.Free(expected_outer_product); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // CERES_NO_CXSPARSE | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |