| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: wjr@google.com (William Rucklidge) | 
 | // | 
 | // This file contains tests for the GradientChecker class. | 
 |  | 
 | #include "ceres/gradient_checker.h" | 
 |  | 
 | #include <cmath> | 
 | #include <cstdlib> | 
 | #include <glog/logging.h> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/random.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // We pick a (non-quadratic) function whose derivative are easy: | 
 | // | 
 | //    f = exp(- a' x). | 
 | //   df = - f a. | 
 | // | 
 | // where 'a' is a vector of the same size as 'x'. In the block | 
 | // version, they are both block vectors, of course. | 
 | class GoodTestTerm : public CostFunction { | 
 |  public: | 
 |   GoodTestTerm(int arity, int const *dim) : arity_(arity) { | 
 |     // Make 'arity' random vectors. | 
 |     a_.resize(arity_); | 
 |     for (int j = 0; j < arity_; ++j) { | 
 |       a_[j].resize(dim[j]); | 
 |       for (int u = 0; u < dim[j]; ++u) { | 
 |         a_[j][u] = 2.0 * RandDouble() - 1.0; | 
 |       } | 
 |     } | 
 |  | 
 |     for (int i = 0; i < arity_; i++) { | 
 |       mutable_parameter_block_sizes()->push_back(dim[i]); | 
 |     } | 
 |     set_num_residuals(1); | 
 |   } | 
 |  | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const { | 
 |     // Compute a . x. | 
 |     double ax = 0; | 
 |     for (int j = 0; j < arity_; ++j) { | 
 |       for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
 |         ax += a_[j][u] * parameters[j][u]; | 
 |       } | 
 |     } | 
 |  | 
 |     // This is the cost, but also appears as a factor | 
 |     // in the derivatives. | 
 |     double f = *residuals = exp(-ax); | 
 |  | 
 |     // Accumulate 1st order derivatives. | 
 |     if (jacobians) { | 
 |       for (int j = 0; j < arity_; ++j) { | 
 |         if (jacobians[j]) { | 
 |           for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
 |             // See comments before class. | 
 |             jacobians[j][u] = - f * a_[j][u]; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   int arity_; | 
 |   vector<vector<double> > a_;  // our vectors. | 
 | }; | 
 |  | 
 | class BadTestTerm : public CostFunction { | 
 |  public: | 
 |   BadTestTerm(int arity, int const *dim) : arity_(arity) { | 
 |     // Make 'arity' random vectors. | 
 |     a_.resize(arity_); | 
 |     for (int j = 0; j < arity_; ++j) { | 
 |       a_[j].resize(dim[j]); | 
 |       for (int u = 0; u < dim[j]; ++u) { | 
 |         a_[j][u] = 2.0 * RandDouble() - 1.0; | 
 |       } | 
 |     } | 
 |  | 
 |     for (int i = 0; i < arity_; i++) { | 
 |       mutable_parameter_block_sizes()->push_back(dim[i]); | 
 |     } | 
 |     set_num_residuals(1); | 
 |   } | 
 |  | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const { | 
 |     // Compute a . x. | 
 |     double ax = 0; | 
 |     for (int j = 0; j < arity_; ++j) { | 
 |       for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
 |         ax += a_[j][u] * parameters[j][u]; | 
 |       } | 
 |     } | 
 |  | 
 |     // This is the cost, but also appears as a factor | 
 |     // in the derivatives. | 
 |     double f = *residuals = exp(-ax); | 
 |  | 
 |     // Accumulate 1st order derivatives. | 
 |     if (jacobians) { | 
 |       for (int j = 0; j < arity_; ++j) { | 
 |         if (jacobians[j]) { | 
 |           for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
 |             // See comments before class. | 
 |             jacobians[j][u] = - f * a_[j][u] + 0.001; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   int arity_; | 
 |   vector<vector<double> > a_;  // our vectors. | 
 | }; | 
 |  | 
 | TEST(GradientChecker, SmokeTest) { | 
 |   srand(5); | 
 |  | 
 |   // Test with 3 blocks of size 2, 3 and 4. | 
 |   int const arity = 3; | 
 |   int const dim[arity] = { 2, 3, 4 }; | 
 |  | 
 |   // Make a random set of blocks. | 
 |   FixedArray<double*> parameters(arity); | 
 |   for (int j = 0; j < arity; ++j) { | 
 |     parameters[j] = new double[dim[j]]; | 
 |     for (int u = 0; u < dim[j]; ++u) { | 
 |       parameters[j][u] = 2.0 * RandDouble() - 1.0; | 
 |     } | 
 |   } | 
 |  | 
 |   // Make a term and probe it. | 
 |   GoodTestTerm good_term(arity, dim); | 
 |   typedef GradientChecker<GoodTestTerm, 1, 2, 3, 4> GoodTermGradientChecker; | 
 |   EXPECT_TRUE(GoodTermGradientChecker::Probe( | 
 |       parameters.get(), 1e-6, &good_term, NULL)); | 
 |  | 
 |   BadTestTerm bad_term(arity, dim); | 
 |   typedef GradientChecker<BadTestTerm, 1, 2, 3, 4> BadTermGradientChecker; | 
 |   EXPECT_FALSE(BadTermGradientChecker::Probe( | 
 |       parameters.get(), 1e-6, &bad_term, NULL)); | 
 |  | 
 |   for (int j = 0; j < arity; j++) { | 
 |     delete[] parameters[j]; | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |