| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/line_search_direction.h" |
| #include "ceres/line_search_minimizer.h" |
| #include "ceres/low_rank_inverse_hessian.h" |
| #include "ceres/internal/eigen.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class SteepestDescent : public LineSearchDirection { |
| public: |
| virtual ~SteepestDescent() {} |
| bool NextDirection(const LineSearchMinimizer::State& previous, |
| const LineSearchMinimizer::State& current, |
| Vector* search_direction) { |
| *search_direction = -current.gradient; |
| return true; |
| } |
| }; |
| |
| class NonlinearConjugateGradient : public LineSearchDirection { |
| public: |
| NonlinearConjugateGradient(const NonlinearConjugateGradientType type, |
| const double function_tolerance) |
| : type_(type), |
| function_tolerance_(function_tolerance) { |
| } |
| |
| bool NextDirection(const LineSearchMinimizer::State& previous, |
| const LineSearchMinimizer::State& current, |
| Vector* search_direction) { |
| double beta = 0.0; |
| Vector gradient_change; |
| switch (type_) { |
| case FLETCHER_REEVES: |
| beta = current.gradient_squared_norm / previous.gradient_squared_norm; |
| break; |
| case POLAK_RIBIRERE: |
| gradient_change = current.gradient - previous.gradient; |
| beta = (current.gradient.dot(gradient_change) / |
| previous.gradient_squared_norm); |
| break; |
| case HESTENES_STIEFEL: |
| gradient_change = current.gradient - previous.gradient; |
| beta = (current.gradient.dot(gradient_change) / |
| previous.search_direction.dot(gradient_change)); |
| break; |
| default: |
| LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_; |
| } |
| |
| *search_direction = -current.gradient + beta * previous.search_direction; |
| const double directional_derivative = current. gradient.dot(*search_direction); |
| if (directional_derivative > -function_tolerance_) { |
| LOG(WARNING) << "Restarting non-linear conjugate gradients: " |
| << directional_derivative; |
| *search_direction = -current.gradient; |
| }; |
| |
| return true; |
| } |
| |
| private: |
| const NonlinearConjugateGradientType type_; |
| const double function_tolerance_; |
| }; |
| |
| class LBFGS : public LineSearchDirection { |
| public: |
| LBFGS(const int num_parameters, const int max_lbfgs_rank) |
| : low_rank_inverse_hessian_(num_parameters, max_lbfgs_rank) {} |
| |
| virtual ~LBFGS() {} |
| |
| bool NextDirection(const LineSearchMinimizer::State& previous, |
| const LineSearchMinimizer::State& current, |
| Vector* search_direction) { |
| low_rank_inverse_hessian_.Update( |
| previous.search_direction * previous.step_size, |
| current.gradient - previous.gradient); |
| search_direction->setZero(); |
| low_rank_inverse_hessian_.RightMultiply(current.gradient.data(), |
| search_direction->data()); |
| *search_direction *= -1.0; |
| return true; |
| } |
| |
| private: |
| LowRankInverseHessian low_rank_inverse_hessian_; |
| }; |
| |
| LineSearchDirection* |
| LineSearchDirection::Create(LineSearchDirection::Options& options) { |
| if (options.type == STEEPEST_DESCENT) { |
| return new SteepestDescent; |
| } |
| |
| if (options.type == NONLINEAR_CONJUGATE_GRADIENT) { |
| return new NonlinearConjugateGradient( |
| options.nonlinear_conjugate_gradient_type, |
| options.function_tolerance); |
| } |
| |
| if (options.type == ceres::LBFGS) { |
| return new ceres::internal::LBFGS(options.num_parameters, |
| options.max_lbfgs_rank); |
| } |
| |
| LOG(ERROR) << "Unknown line search direction type: " << options.type; |
| return NULL; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |