|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // Based on the templated version in public/numeric_diff_cost_function.h. | 
|  |  | 
|  | #include "ceres/runtime_numeric_diff_cost_function.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  |  | 
|  | bool EvaluateJacobianForParameterBlock(const CostFunction* function, | 
|  | int parameter_block_size, | 
|  | int parameter_block, | 
|  | RuntimeNumericDiffMethod method, | 
|  | double relative_step_size, | 
|  | double const* residuals_at_eval_point, | 
|  | double** parameters, | 
|  | double** jacobians) { | 
|  | using Eigen::Map; | 
|  | using Eigen::Matrix; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::RowMajor; | 
|  |  | 
|  | typedef Matrix<double, Dynamic, 1> ResidualVector; | 
|  | typedef Matrix<double, Dynamic, 1> ParameterVector; | 
|  | typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix; | 
|  |  | 
|  | int num_residuals = function->num_residuals(); | 
|  |  | 
|  | Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], | 
|  | num_residuals, | 
|  | parameter_block_size); | 
|  |  | 
|  | // Mutate one element at a time and then restore. | 
|  | Map<ParameterVector> x_plus_delta(parameters[parameter_block], | 
|  | parameter_block_size); | 
|  | ParameterVector x(x_plus_delta); | 
|  | ParameterVector step_size = x.array().abs() * relative_step_size; | 
|  |  | 
|  | // To handle cases where a paremeter is exactly zero, instead use the mean | 
|  | // step_size for the other dimensions. | 
|  | double fallback_step_size = step_size.sum() / step_size.rows(); | 
|  | if (fallback_step_size == 0.0) { | 
|  | // If all the parameters are zero, there's no good answer. Use the given | 
|  | // relative step_size as absolute step_size and hope for the best. | 
|  | fallback_step_size = relative_step_size; | 
|  | } | 
|  |  | 
|  | // For each parameter in the parameter block, use finite differences to | 
|  | // compute the derivative for that parameter. | 
|  | for (int j = 0; j < parameter_block_size; ++j) { | 
|  | if (step_size(j) == 0.0) { | 
|  | // The parameter is exactly zero, so compromise and use the mean step_size | 
|  | // from the other parameters. This can break in many cases, but it's hard | 
|  | // to pick a good number without problem specific knowledge. | 
|  | step_size(j) = fallback_step_size; | 
|  | } | 
|  | x_plus_delta(j) = x(j) + step_size(j); | 
|  |  | 
|  | ResidualVector residuals(num_residuals); | 
|  | if (!function->Evaluate(parameters, &residuals[0], NULL)) { | 
|  | // Something went wrong; bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Compute this column of the jacobian in 3 steps: | 
|  | // 1. Store residuals for the forward part. | 
|  | // 2. Subtract residuals for the backward (or 0) part. | 
|  | // 3. Divide out the run. | 
|  | parameter_jacobian.col(j) = residuals; | 
|  |  | 
|  | double one_over_h = 1 / step_size(j); | 
|  | if (method == CENTRAL) { | 
|  | // Compute the function on the other side of x(j). | 
|  | x_plus_delta(j) = x(j) - step_size(j); | 
|  |  | 
|  | if (!function->Evaluate(parameters, &residuals[0], NULL)) { | 
|  | // Something went wrong; bail. | 
|  | return false; | 
|  | } | 
|  | parameter_jacobian.col(j) -= residuals; | 
|  | one_over_h /= 2; | 
|  | } else { | 
|  | // Forward difference only; reuse existing residuals evaluation. | 
|  | parameter_jacobian.col(j) -= | 
|  | Map<const ResidualVector>(residuals_at_eval_point, num_residuals); | 
|  | } | 
|  | x_plus_delta(j) = x(j);  // Restore x_plus_delta. | 
|  |  | 
|  | // Divide out the run to get slope. | 
|  | parameter_jacobian.col(j) *= one_over_h; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | class RuntimeNumericDiffCostFunction : public CostFunction { | 
|  | public: | 
|  | RuntimeNumericDiffCostFunction(const CostFunction* function, | 
|  | RuntimeNumericDiffMethod method, | 
|  | double relative_step_size) | 
|  | : function_(function), | 
|  | method_(method), | 
|  | relative_step_size_(relative_step_size) { | 
|  | *mutable_parameter_block_sizes() = function->parameter_block_sizes(); | 
|  | set_num_residuals(function->num_residuals()); | 
|  | } | 
|  |  | 
|  | virtual ~RuntimeNumericDiffCostFunction() { } | 
|  |  | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | // Get the function value (residuals) at the the point to evaluate. | 
|  | bool success = function_->Evaluate(parameters, residuals, NULL); | 
|  | if (!success) { | 
|  | // Something went wrong; ignore the jacobian. | 
|  | return false; | 
|  | } | 
|  | if (!jacobians) { | 
|  | // Nothing to do; just forward. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const vector<int16>& block_sizes = function_->parameter_block_sizes(); | 
|  | CHECK(!block_sizes.empty()); | 
|  |  | 
|  | // Create local space for a copy of the parameters which will get mutated. | 
|  | int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0); | 
|  | vector<double> parameters_copy(parameters_size); | 
|  | vector<double*> parameters_references_copy(block_sizes.size()); | 
|  | parameters_references_copy[0] = ¶meters_copy[0]; | 
|  | for (int block = 1; block < block_sizes.size(); ++block) { | 
|  | parameters_references_copy[block] = parameters_references_copy[block - 1] | 
|  | + block_sizes[block - 1]; | 
|  | } | 
|  |  | 
|  | // Copy the parameters into the local temp space. | 
|  | for (int block = 0; block < block_sizes.size(); ++block) { | 
|  | memcpy(parameters_references_copy[block], | 
|  | parameters[block], | 
|  | block_sizes[block] * sizeof(*parameters[block])); | 
|  | } | 
|  |  | 
|  | for (int block = 0; block < block_sizes.size(); ++block) { | 
|  | if (!jacobians[block]) { | 
|  | // No jacobian requested for this parameter / residual pair. | 
|  | continue; | 
|  | } | 
|  | if (!EvaluateJacobianForParameterBlock(function_, | 
|  | block_sizes[block], | 
|  | block, | 
|  | method_, | 
|  | relative_step_size_, | 
|  | residuals, | 
|  | ¶meters_references_copy[0], | 
|  | jacobians)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const CostFunction* function_; | 
|  | RuntimeNumericDiffMethod method_; | 
|  | double relative_step_size_; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | CostFunction* CreateRuntimeNumericDiffCostFunction( | 
|  | const CostFunction* cost_function, | 
|  | RuntimeNumericDiffMethod method, | 
|  | double relative_step_size) { | 
|  | return new RuntimeNumericDiffCostFunction(cost_function, | 
|  | method, | 
|  | relative_step_size); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |