| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "gtest/gtest.h" | 
 | #include "ceres/autodiff_cost_function.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/ordered_groups.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/solver_impl.h" | 
 | #include "ceres/sized_cost_function.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // A cost function that sipmply returns its argument. | 
 | class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> { | 
 |  public: | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     residuals[0] = parameters[0][0]; | 
 |     if (jacobians != NULL && jacobians[0] != NULL) { | 
 |       jacobians[0][0] = 1.0; | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | // Templated base class for the CostFunction signatures. | 
 | template <int kNumResiduals, int N0, int N1, int N2> | 
 | class MockCostFunctionBase : public | 
 | SizedCostFunction<kNumResiduals, N0, N1, N2> { | 
 |  public: | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     // Do nothing. This is never called. | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | class UnaryCostFunction : public MockCostFunctionBase<2, 1, 0, 0> {}; | 
 | class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1, 0> {}; | 
 | class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {}; | 
 |  | 
 | TEST(SolverImpl, RemoveFixedBlocksNothingConstant) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
 |   problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
 |  | 
 |   string error; | 
 |   { | 
 |     ParameterBlockOrdering ordering; | 
 |     ordering.AddElementToGroup(&x, 0); | 
 |     ordering.AddElementToGroup(&y, 0); | 
 |     ordering.AddElementToGroup(&z, 0); | 
 |  | 
 |     Program program(*problem.mutable_program()); | 
 |     EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
 |                                                          &ordering, | 
 |                                                          NULL, | 
 |                                                          &error)); | 
 |     EXPECT_EQ(program.NumParameterBlocks(), 3); | 
 |     EXPECT_EQ(program.NumResidualBlocks(), 3); | 
 |     EXPECT_EQ(ordering.NumElements(), 3); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SolverImpl, RemoveFixedBlocksAllParameterBlocksConstant) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
 |   problem.SetParameterBlockConstant(&x); | 
 |  | 
 |   ParameterBlockOrdering ordering; | 
 |   ordering.AddElementToGroup(&x, 0); | 
 |  | 
 |   Program program(problem.program()); | 
 |   string error; | 
 |   EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
 |                                                        &ordering, | 
 |                                                        NULL, | 
 |                                                        &error)); | 
 |   EXPECT_EQ(program.NumParameterBlocks(), 0); | 
 |   EXPECT_EQ(program.NumResidualBlocks(), 0); | 
 |   EXPECT_EQ(ordering.NumElements(), 0); | 
 | } | 
 |  | 
 | TEST(SolverImpl, RemoveFixedBlocksNoResidualBlocks) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |  | 
 |   ParameterBlockOrdering ordering; | 
 |   ordering.AddElementToGroup(&x, 0); | 
 |   ordering.AddElementToGroup(&y, 0); | 
 |   ordering.AddElementToGroup(&z, 0); | 
 |  | 
 |  | 
 |   Program program(problem.program()); | 
 |   string error; | 
 |   EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
 |                                                        &ordering, | 
 |                                                        NULL, | 
 |                                                        &error)); | 
 |   EXPECT_EQ(program.NumParameterBlocks(), 0); | 
 |   EXPECT_EQ(program.NumResidualBlocks(), 0); | 
 |   EXPECT_EQ(ordering.NumElements(), 0); | 
 | } | 
 |  | 
 | TEST(SolverImpl, RemoveFixedBlocksOneParameterBlockConstant) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |  | 
 |   ParameterBlockOrdering ordering; | 
 |   ordering.AddElementToGroup(&x, 0); | 
 |   ordering.AddElementToGroup(&y, 0); | 
 |   ordering.AddElementToGroup(&z, 0); | 
 |  | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
 |   problem.SetParameterBlockConstant(&x); | 
 |  | 
 |  | 
 |   Program program(problem.program()); | 
 |   string error; | 
 |   EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
 |                                                        &ordering, | 
 |                                                        NULL, | 
 |                                                        &error)); | 
 |   EXPECT_EQ(program.NumParameterBlocks(), 1); | 
 |   EXPECT_EQ(program.NumResidualBlocks(), 1); | 
 |   EXPECT_EQ(ordering.NumElements(), 1); | 
 | } | 
 |  | 
 | TEST(SolverImpl, RemoveFixedBlocksNumEliminateBlocks) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
 |   problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
 |   problem.SetParameterBlockConstant(&x); | 
 |  | 
 |   ParameterBlockOrdering ordering; | 
 |   ordering.AddElementToGroup(&x, 0); | 
 |   ordering.AddElementToGroup(&y, 0); | 
 |   ordering.AddElementToGroup(&z, 1); | 
 |  | 
 |   Program program(problem.program()); | 
 |   string error; | 
 |   EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
 |                                                        &ordering, | 
 |                                                        NULL, | 
 |                                                        &error)); | 
 |   EXPECT_EQ(program.NumParameterBlocks(), 2); | 
 |   EXPECT_EQ(program.NumResidualBlocks(), 2); | 
 |   EXPECT_EQ(ordering.NumElements(), 2); | 
 |   EXPECT_EQ(ordering.GroupId(&y), 0); | 
 |   EXPECT_EQ(ordering.GroupId(&z), 1); | 
 | } | 
 |  | 
 | TEST(SolverImpl, RemoveFixedBlocksFixedCost) { | 
 |   ProblemImpl problem; | 
 |   double x = 1.23; | 
 |   double y = 4.56; | 
 |   double z = 7.89; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |   problem.AddResidualBlock(new UnaryIdentityCostFunction(), NULL, &x); | 
 |   problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
 |   problem.SetParameterBlockConstant(&x); | 
 |  | 
 |   ParameterBlockOrdering ordering; | 
 |   ordering.AddElementToGroup(&x, 0); | 
 |   ordering.AddElementToGroup(&y, 0); | 
 |   ordering.AddElementToGroup(&z, 1); | 
 |  | 
 |   double fixed_cost = 0.0; | 
 |   Program program(problem.program()); | 
 |  | 
 |   double expected_fixed_cost; | 
 |   ResidualBlock *expected_removed_block = program.residual_blocks()[0]; | 
 |   scoped_array<double> scratch(new double[expected_removed_block->NumScratchDoublesForEvaluate()]); | 
 |   expected_removed_block->Evaluate(&expected_fixed_cost, NULL, NULL, scratch.get()); | 
 |  | 
 |   string error; | 
 |   EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, | 
 |                                                        &ordering, | 
 |                                                        &fixed_cost, | 
 |                                                        &error)); | 
 |   EXPECT_EQ(program.NumParameterBlocks(), 2); | 
 |   EXPECT_EQ(program.NumResidualBlocks(), 2); | 
 |   EXPECT_EQ(ordering.NumElements(), 2); | 
 |   EXPECT_EQ(ordering.GroupId(&y), 0); | 
 |   EXPECT_EQ(ordering.GroupId(&z), 1); | 
 |   EXPECT_DOUBLE_EQ(fixed_cost, expected_fixed_cost); | 
 | } | 
 |  | 
 | TEST(SolverImpl, ReorderResidualBlockNormalFunction) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |  | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); | 
 |  | 
 |   ParameterBlockOrdering* ordering = new ParameterBlockOrdering; | 
 |   ordering->AddElementToGroup(&x, 0); | 
 |   ordering->AddElementToGroup(&y, 0); | 
 |   ordering->AddElementToGroup(&z, 1); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_SCHUR; | 
 |   options.linear_solver_ordering = ordering; | 
 |  | 
 |   const vector<ResidualBlock*>& residual_blocks = | 
 |       problem.program().residual_blocks(); | 
 |  | 
 |   vector<ResidualBlock*> expected_residual_blocks; | 
 |  | 
 |   // This is a bit fragile, but it serves the purpose. We know the | 
 |   // bucketing algorithm that the reordering function uses, so we | 
 |   // expect the order for residual blocks for each e_block to be | 
 |   // filled in reverse. | 
 |   expected_residual_blocks.push_back(residual_blocks[4]); | 
 |   expected_residual_blocks.push_back(residual_blocks[1]); | 
 |   expected_residual_blocks.push_back(residual_blocks[0]); | 
 |   expected_residual_blocks.push_back(residual_blocks[5]); | 
 |   expected_residual_blocks.push_back(residual_blocks[2]); | 
 |   expected_residual_blocks.push_back(residual_blocks[3]); | 
 |  | 
 |   Program* program = problem.mutable_program(); | 
 |   program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |   string error; | 
 |   EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks( | 
 |                   2, | 
 |                   problem.mutable_program(), | 
 |                   &error)); | 
 |   EXPECT_EQ(residual_blocks.size(), expected_residual_blocks.size()); | 
 |   for (int i = 0; i < expected_residual_blocks.size(); ++i) { | 
 |     EXPECT_EQ(residual_blocks[i], expected_residual_blocks[i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SolverImpl, ReorderResidualBlockNormalFunctionWithFixedBlocks) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |  | 
 |   // Set one parameter block constant. | 
 |   problem.SetParameterBlockConstant(&z); | 
 |  | 
 |   // Mark residuals for x's row block with "x" for readability. | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);       // 0 x | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);  // 1 x | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 2 | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 3 | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);  // 4 x | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 5 | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);  // 6 x | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);       // 7 | 
 |  | 
 |   ParameterBlockOrdering* ordering = new ParameterBlockOrdering; | 
 |   ordering->AddElementToGroup(&x, 0); | 
 |   ordering->AddElementToGroup(&z, 0); | 
 |   ordering->AddElementToGroup(&y, 1); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_SCHUR; | 
 |   options.linear_solver_ordering = ordering; | 
 |  | 
 |   // Create the reduced program. This should remove the fixed block "z", | 
 |   // marking the index to -1 at the same time. x and y also get indices. | 
 |   string error; | 
 |   scoped_ptr<Program> reduced_program( | 
 |       SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error)); | 
 |  | 
 |   const vector<ResidualBlock*>& residual_blocks = | 
 |       problem.program().residual_blocks(); | 
 |  | 
 |   // This is a bit fragile, but it serves the purpose. We know the | 
 |   // bucketing algorithm that the reordering function uses, so we | 
 |   // expect the order for residual blocks for each e_block to be | 
 |   // filled in reverse. | 
 |  | 
 |   vector<ResidualBlock*> expected_residual_blocks; | 
 |  | 
 |   // Row block for residuals involving "x". These are marked "x" in the block | 
 |   // of code calling AddResidual() above. | 
 |   expected_residual_blocks.push_back(residual_blocks[6]); | 
 |   expected_residual_blocks.push_back(residual_blocks[4]); | 
 |   expected_residual_blocks.push_back(residual_blocks[1]); | 
 |   expected_residual_blocks.push_back(residual_blocks[0]); | 
 |  | 
 |   // Row block for residuals involving "y". | 
 |   expected_residual_blocks.push_back(residual_blocks[7]); | 
 |   expected_residual_blocks.push_back(residual_blocks[5]); | 
 |   expected_residual_blocks.push_back(residual_blocks[3]); | 
 |   expected_residual_blocks.push_back(residual_blocks[2]); | 
 |  | 
 |   EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks( | 
 |                   2, | 
 |                   reduced_program.get(), | 
 |                   &error)); | 
 |  | 
 |   EXPECT_EQ(reduced_program->residual_blocks().size(), | 
 |             expected_residual_blocks.size()); | 
 |   for (int i = 0; i < expected_residual_blocks.size(); ++i) { | 
 |     EXPECT_EQ(reduced_program->residual_blocks()[i], | 
 |               expected_residual_blocks[i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SolverImpl, AutomaticSchurReorderingRespectsConstantBlocks) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |  | 
 |   // Set one parameter block constant. | 
 |   problem.SetParameterBlockConstant(&z); | 
 |  | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
 |   problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); | 
 |   problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z); | 
 |  | 
 |   ParameterBlockOrdering* ordering = new ParameterBlockOrdering; | 
 |   ordering->AddElementToGroup(&x, 0); | 
 |   ordering->AddElementToGroup(&z, 0); | 
 |   ordering->AddElementToGroup(&y, 0); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_SCHUR; | 
 |   options.linear_solver_ordering = ordering; | 
 |  | 
 |   string error; | 
 |   scoped_ptr<Program> reduced_program( | 
 |       SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error)); | 
 |  | 
 |   const vector<ResidualBlock*>& residual_blocks = | 
 |       reduced_program->residual_blocks(); | 
 |   const vector<ParameterBlock*>& parameter_blocks = | 
 |       reduced_program->parameter_blocks(); | 
 |  | 
 |   const vector<ResidualBlock*>& original_residual_blocks = | 
 |       problem.program().residual_blocks(); | 
 |  | 
 |   EXPECT_EQ(residual_blocks.size(), 8); | 
 |   EXPECT_EQ(reduced_program->parameter_blocks().size(), 2); | 
 |  | 
 |   // Verify that right parmeter block and the residual blocks have | 
 |   // been removed. | 
 |   for (int i = 0; i < 8; ++i) { | 
 |     EXPECT_NE(residual_blocks[i], original_residual_blocks.back()); | 
 |   } | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     EXPECT_NE(parameter_blocks[i]->mutable_user_state(), &z); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SolverImpl, ApplyUserOrderingOrderingTooSmall) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |  | 
 |   ParameterBlockOrdering ordering; | 
 |   ordering.AddElementToGroup(&x, 0); | 
 |   ordering.AddElementToGroup(&y, 1); | 
 |  | 
 |   Program program(problem.program()); | 
 |   string error; | 
 |   EXPECT_FALSE(SolverImpl::ApplyUserOrdering(problem.parameter_map(), | 
 |                                              &ordering, | 
 |                                              &program, | 
 |                                              &error)); | 
 | } | 
 |  | 
 | TEST(SolverImpl, ApplyUserOrderingNormal) { | 
 |   ProblemImpl problem; | 
 |   double x; | 
 |   double y; | 
 |   double z; | 
 |  | 
 |   problem.AddParameterBlock(&x, 1); | 
 |   problem.AddParameterBlock(&y, 1); | 
 |   problem.AddParameterBlock(&z, 1); | 
 |  | 
 |   ParameterBlockOrdering ordering; | 
 |   ordering.AddElementToGroup(&x, 0); | 
 |   ordering.AddElementToGroup(&y, 2); | 
 |   ordering.AddElementToGroup(&z, 1); | 
 |  | 
 |   Program* program = problem.mutable_program(); | 
 |   string error; | 
 |  | 
 |   EXPECT_TRUE(SolverImpl::ApplyUserOrdering(problem.parameter_map(), | 
 |                                             &ordering, | 
 |                                             program, | 
 |                                             &error)); | 
 |   const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); | 
 |  | 
 |   EXPECT_EQ(parameter_blocks.size(), 3); | 
 |   EXPECT_EQ(parameter_blocks[0]->user_state(), &x); | 
 |   EXPECT_EQ(parameter_blocks[1]->user_state(), &z); | 
 |   EXPECT_EQ(parameter_blocks[2]->user_state(), &y); | 
 | } | 
 |  | 
 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
 | TEST(SolverImpl, CreateLinearSolverNoSuiteSparse) { | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
 |   // CreateLinearSolver assumes a non-empty ordering. | 
 |   options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |   string error; | 
 |   EXPECT_FALSE(SolverImpl::CreateLinearSolver(&options, &error)); | 
 | } | 
 | #endif | 
 |  | 
 | TEST(SolverImpl, CreateLinearSolverNegativeMaxNumIterations) { | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   options.linear_solver_max_num_iterations = -1; | 
 |   // CreateLinearSolver assumes a non-empty ordering. | 
 |   options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |   string error; | 
 |   EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
 |             static_cast<LinearSolver*>(NULL)); | 
 | } | 
 |  | 
 | TEST(SolverImpl, CreateLinearSolverNegativeMinNumIterations) { | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   options.linear_solver_min_num_iterations = -1; | 
 |   // CreateLinearSolver assumes a non-empty ordering. | 
 |   options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |   string error; | 
 |   EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
 |             static_cast<LinearSolver*>(NULL)); | 
 | } | 
 |  | 
 | TEST(SolverImpl, CreateLinearSolverMaxLessThanMinIterations) { | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   options.linear_solver_min_num_iterations = 10; | 
 |   options.linear_solver_max_num_iterations = 5; | 
 |   options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |   string error; | 
 |   EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
 |             static_cast<LinearSolver*>(NULL)); | 
 | } | 
 |  | 
 | TEST(SolverImpl, CreateLinearSolverDenseSchurMultipleThreads) { | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_SCHUR; | 
 |   options.num_linear_solver_threads = 2; | 
 |   // The Schur type solvers can only be created with the Ordering | 
 |   // contains at least one elimination group. | 
 |   options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |   double x; | 
 |   double y; | 
 |   options.linear_solver_ordering->AddElementToGroup(&x, 0); | 
 |   options.linear_solver_ordering->AddElementToGroup(&y, 0); | 
 |  | 
 |   string error; | 
 |   scoped_ptr<LinearSolver> solver( | 
 |       SolverImpl::CreateLinearSolver(&options, &error)); | 
 |   EXPECT_TRUE(solver != NULL); | 
 |   EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); | 
 |   EXPECT_EQ(options.num_linear_solver_threads, 1); | 
 | } | 
 |  | 
 | TEST(SolverImpl, CreateIterativeLinearSolverForDogleg) { | 
 |   Solver::Options options; | 
 |   options.trust_region_strategy_type = DOGLEG; | 
 |   // CreateLinearSolver assumes a non-empty ordering. | 
 |   options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |   string error; | 
 |   options.linear_solver_type = ITERATIVE_SCHUR; | 
 |   EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
 |             static_cast<LinearSolver*>(NULL)); | 
 |  | 
 |   options.linear_solver_type = CGNR; | 
 |   EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), | 
 |             static_cast<LinearSolver*>(NULL)); | 
 | } | 
 |  | 
 | TEST(SolverImpl, CreateLinearSolverNormalOperation) { | 
 |   Solver::Options options; | 
 |   scoped_ptr<LinearSolver> solver; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   // CreateLinearSolver assumes a non-empty ordering. | 
 |   options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |   string error; | 
 |   solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
 |   EXPECT_EQ(options.linear_solver_type, DENSE_QR); | 
 |   EXPECT_TRUE(solver.get() != NULL); | 
 |  | 
 |   options.linear_solver_type = DENSE_NORMAL_CHOLESKY; | 
 |   solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
 |   EXPECT_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY); | 
 |   EXPECT_TRUE(solver.get() != NULL); | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |   options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.sparse_linear_algebra_library = SUITE_SPARSE; | 
 |   solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
 |   EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
 |   EXPECT_TRUE(solver.get() != NULL); | 
 | #endif | 
 |  | 
 | #ifndef CERES_NO_CXSPARSE | 
 |   options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.sparse_linear_algebra_library = CX_SPARSE; | 
 |   solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
 |   EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
 |   EXPECT_TRUE(solver.get() != NULL); | 
 | #endif | 
 |  | 
 |   double x; | 
 |   double y; | 
 |   options.linear_solver_ordering->AddElementToGroup(&x, 0); | 
 |   options.linear_solver_ordering->AddElementToGroup(&y, 0); | 
 |  | 
 |   options.linear_solver_type = DENSE_SCHUR; | 
 |   solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
 |   EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); | 
 |   EXPECT_TRUE(solver.get() != NULL); | 
 |  | 
 |   options.linear_solver_type = SPARSE_SCHUR; | 
 |   solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
 |  | 
 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
 |   EXPECT_TRUE(SolverImpl::CreateLinearSolver(&options, &error) == NULL); | 
 | #else | 
 |   EXPECT_TRUE(solver.get() != NULL); | 
 |   EXPECT_EQ(options.linear_solver_type, SPARSE_SCHUR); | 
 | #endif | 
 |  | 
 |   options.linear_solver_type = ITERATIVE_SCHUR; | 
 |   solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); | 
 |   EXPECT_EQ(options.linear_solver_type, ITERATIVE_SCHUR); | 
 |   EXPECT_TRUE(solver.get() != NULL); | 
 | } | 
 |  | 
 | struct QuadraticCostFunction { | 
 |   template <typename T> bool operator()(const T* const x, | 
 |                                         T* residual) const { | 
 |     residual[0] = T(5.0) - *x; | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | struct RememberingCallback : public IterationCallback { | 
 |   explicit RememberingCallback(double *x) : calls(0), x(x) {} | 
 |   virtual ~RememberingCallback() {} | 
 |   virtual CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     x_values.push_back(*x); | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |   int calls; | 
 |   double *x; | 
 |   vector<double> x_values; | 
 | }; | 
 |  | 
 | TEST(SolverImpl, UpdateStateEveryIterationOption) { | 
 |   double x = 50.0; | 
 |   const double original_x = x; | 
 |  | 
 |   scoped_ptr<CostFunction> cost_function( | 
 |       new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>( | 
 |           new QuadraticCostFunction)); | 
 |  | 
 |   Problem::Options problem_options; | 
 |   problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
 |   ProblemImpl problem(problem_options); | 
 |   problem.AddResidualBlock(cost_function.get(), NULL, &x); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |  | 
 |   RememberingCallback callback(&x); | 
 |   options.callbacks.push_back(&callback); | 
 |  | 
 |   Solver::Summary summary; | 
 |  | 
 |   int num_iterations; | 
 |  | 
 |   // First try: no updating. | 
 |   SolverImpl::Solve(options, &problem, &summary); | 
 |   num_iterations = summary.num_successful_steps + | 
 |                    summary.num_unsuccessful_steps; | 
 |   EXPECT_GT(num_iterations, 1); | 
 |   for (int i = 0; i < callback.x_values.size(); ++i) { | 
 |     EXPECT_EQ(50.0, callback.x_values[i]); | 
 |   } | 
 |  | 
 |   // Second try: with updating | 
 |   x = 50.0; | 
 |   options.update_state_every_iteration = true; | 
 |   callback.x_values.clear(); | 
 |   SolverImpl::Solve(options, &problem, &summary); | 
 |   num_iterations = summary.num_successful_steps + | 
 |                    summary.num_unsuccessful_steps; | 
 |   EXPECT_GT(num_iterations, 1); | 
 |   EXPECT_EQ(original_x, callback.x_values[0]); | 
 |   EXPECT_NE(original_x, callback.x_values[1]); | 
 | } | 
 |  | 
 | // The parameters must be in separate blocks so that they can be individually | 
 | // set constant or not. | 
 | struct Quadratic4DCostFunction { | 
 |   template <typename T> bool operator()(const T* const x, | 
 |                                         const T* const y, | 
 |                                         const T* const z, | 
 |                                         const T* const w, | 
 |                                         T* residual) const { | 
 |     // A 4-dimension axis-aligned quadratic. | 
 |     residual[0] = T(10.0) - *x + | 
 |                   T(20.0) - *y + | 
 |                   T(30.0) - *z + | 
 |                   T(40.0) - *w; | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(SolverImpl, ConstantParameterBlocksDoNotChangeAndStateInvariantKept) { | 
 |   double x = 50.0; | 
 |   double y = 50.0; | 
 |   double z = 50.0; | 
 |   double w = 50.0; | 
 |   const double original_x = 50.0; | 
 |   const double original_y = 50.0; | 
 |   const double original_z = 50.0; | 
 |   const double original_w = 50.0; | 
 |  | 
 |   scoped_ptr<CostFunction> cost_function( | 
 |       new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>( | 
 |           new Quadratic4DCostFunction)); | 
 |  | 
 |   Problem::Options problem_options; | 
 |   problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
 |  | 
 |   ProblemImpl problem(problem_options); | 
 |   problem.AddResidualBlock(cost_function.get(), NULL, &x, &y, &z, &w); | 
 |   problem.SetParameterBlockConstant(&x); | 
 |   problem.SetParameterBlockConstant(&w); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |  | 
 |   Solver::Summary summary; | 
 |   SolverImpl::Solve(options, &problem, &summary); | 
 |  | 
 |   // Verify only the non-constant parameters were mutated. | 
 |   EXPECT_EQ(original_x, x); | 
 |   EXPECT_NE(original_y, y); | 
 |   EXPECT_NE(original_z, z); | 
 |   EXPECT_EQ(original_w, w); | 
 |  | 
 |   // Check that the parameter block state pointers are pointing back at the | 
 |   // user state, instead of inside a random temporary vector made by Solve(). | 
 |   EXPECT_EQ(&x, problem.program().parameter_blocks()[0]->state()); | 
 |   EXPECT_EQ(&y, problem.program().parameter_blocks()[1]->state()); | 
 |   EXPECT_EQ(&z, problem.program().parameter_blocks()[2]->state()); | 
 |   EXPECT_EQ(&w, problem.program().parameter_blocks()[3]->state()); | 
 | } | 
 |  | 
 | #define CHECK_ARRAY(name, value)       \ | 
 |   if (options.return_ ## name) {       \ | 
 |     EXPECT_EQ(summary.name.size(), 1); \ | 
 |     EXPECT_EQ(summary.name[0], value); \ | 
 |   } else {                             \ | 
 |     EXPECT_EQ(summary.name.size(), 0); \ | 
 |   } | 
 |  | 
 | #define CHECK_JACOBIAN(name)                  \ | 
 |   if (options.return_ ## name) {              \ | 
 |     EXPECT_EQ(summary.name.num_rows, 1);      \ | 
 |     EXPECT_EQ(summary.name.num_cols, 1);      \ | 
 |     EXPECT_EQ(summary.name.cols.size(), 2);   \ | 
 |     EXPECT_EQ(summary.name.cols[0], 0);       \ | 
 |     EXPECT_EQ(summary.name.cols[1], 1);       \ | 
 |     EXPECT_EQ(summary.name.rows.size(), 1);   \ | 
 |     EXPECT_EQ(summary.name.rows[0], 0);       \ | 
 |     EXPECT_EQ(summary.name.values.size(), 0); \ | 
 |     EXPECT_EQ(summary.name.values[0], name);  \ | 
 |   } else {                                    \ | 
 |     EXPECT_EQ(summary.name.num_rows, 0);      \ | 
 |     EXPECT_EQ(summary.name.num_cols, 0);      \ | 
 |     EXPECT_EQ(summary.name.cols.size(), 0);   \ | 
 |     EXPECT_EQ(summary.name.rows.size(), 0);   \ | 
 |     EXPECT_EQ(summary.name.values.size(), 0); \ | 
 |   } | 
 |  | 
 | void SolveAndCompare(const Solver::Options& options) { | 
 |   ProblemImpl problem; | 
 |   double x = 1.0; | 
 |  | 
 |   const double initial_residual = 5.0 - x; | 
 |   const double initial_jacobian = -1.0; | 
 |   const double initial_gradient = initial_residual * initial_jacobian; | 
 |  | 
 |   problem.AddResidualBlock( | 
 |       new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>( | 
 |           new QuadraticCostFunction), | 
 |       NULL, | 
 |       &x); | 
 |   Solver::Summary summary; | 
 |   SolverImpl::Solve(options, &problem, &summary); | 
 |  | 
 |   const double final_residual = 5.0 - x; | 
 |   const double final_jacobian = -1.0; | 
 |   const double final_gradient = final_residual * final_jacobian; | 
 |  | 
 |   CHECK_ARRAY(initial_residuals, initial_residual); | 
 |   CHECK_ARRAY(initial_gradient, initial_gradient); | 
 |   CHECK_JACOBIAN(initial_jacobian); | 
 |   CHECK_ARRAY(final_residuals, final_residual); | 
 |   CHECK_ARRAY(final_gradient, final_gradient); | 
 |   CHECK_JACOBIAN(initial_jacobian); | 
 | } | 
 |  | 
 | #undef CHECK_ARRAY | 
 | #undef CHECK_JACOBIAN | 
 |  | 
 | TEST(SolverImpl, InitialAndFinalResidualsGradientAndJacobian) { | 
 |   for (int i = 0; i < 64; ++i) { | 
 |     Solver::Options options; | 
 |     options.return_initial_residuals = (i & 1); | 
 |     options.return_initial_gradient = (i & 2); | 
 |     options.return_initial_jacobian = (i & 4); | 
 |     options.return_final_residuals = (i & 8); | 
 |     options.return_final_gradient = (i & 16); | 
 |     options.return_final_jacobian = (i & 64); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SolverImpl, NoParameterBlocks) { | 
 |   ProblemImpl problem_impl; | 
 |   Solver::Options options; | 
 |   Solver::Summary summary; | 
 |   SolverImpl::Solve(options, &problem_impl, &summary); | 
 |   EXPECT_EQ(summary.termination_type, DID_NOT_RUN); | 
 |   EXPECT_EQ(summary.error, "Problem contains no parameter blocks."); | 
 | } | 
 |  | 
 | TEST(SolverImpl, NoResiduals) { | 
 |   ProblemImpl problem_impl; | 
 |   Solver::Options options; | 
 |   Solver::Summary summary; | 
 |   double x = 1; | 
 |   problem_impl.AddParameterBlock(&x, 1); | 
 |   SolverImpl::Solve(options, &problem_impl, &summary); | 
 |   EXPECT_EQ(summary.termination_type, DID_NOT_RUN); | 
 |   EXPECT_EQ(summary.error, "Problem contains no residual blocks."); | 
 | } | 
 |  | 
 | class FailingCostFunction : public SizedCostFunction<1, 1> { | 
 |  public: | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(SolverImpl, InitialCostEvaluationFails) { | 
 |   ProblemImpl problem_impl; | 
 |   Solver::Options options; | 
 |   Solver::Summary summary; | 
 |   double x; | 
 |   problem_impl.AddResidualBlock(new FailingCostFunction, NULL, &x); | 
 |   SolverImpl::Solve(options, &problem_impl, &summary); | 
 |   EXPECT_EQ(summary.termination_type, NUMERICAL_FAILURE); | 
 |   EXPECT_EQ(summary.error, "Unable to evaluate the initial cost."); | 
 | } | 
 |  | 
 | TEST(SolverImpl, ProblemIsConstant) { | 
 |   ProblemImpl problem_impl; | 
 |   Solver::Options options; | 
 |   Solver::Summary summary; | 
 |   double x = 1; | 
 |   problem_impl.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x); | 
 |   problem_impl.SetParameterBlockConstant(&x); | 
 |   SolverImpl::Solve(options, &problem_impl, &summary); | 
 |   EXPECT_EQ(summary.termination_type, FUNCTION_TOLERANCE); | 
 |   EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); | 
 |   EXPECT_EQ(summary.final_cost, 1.0 / 2.0); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |