| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2014 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/reorder_program.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <numeric> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/cxsparse.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/ordered_groups.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/parameter_block_ordering.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/solver.h" | 
 | #include "ceres/suitesparse.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "Eigen/SparseCore" | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 | #include "Eigen/OrderingMethods" | 
 | #endif | 
 |  | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::map; | 
 | using std::set; | 
 | using std::string; | 
 | using std::vector; | 
 |  | 
 | namespace { | 
 |  | 
 | // Find the minimum index of any parameter block to the given | 
 | // residual.  Parameter blocks that have indices greater than | 
 | // size_of_first_elimination_group are considered to have an index | 
 | // equal to size_of_first_elimination_group. | 
 | static int MinParameterBlock(const ResidualBlock* residual_block, | 
 |                              int size_of_first_elimination_group) { | 
 |   int min_parameter_block_position = size_of_first_elimination_group; | 
 |   for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) { | 
 |     ParameterBlock* parameter_block = residual_block->parameter_blocks()[i]; | 
 |     if (!parameter_block->IsConstant()) { | 
 |       CHECK_NE(parameter_block->index(), -1) | 
 |           << "Did you forget to call Program::SetParameterOffsetsAndIndex()? " | 
 |           << "This is a Ceres bug; please contact the developers!"; | 
 |       min_parameter_block_position = std::min(parameter_block->index(), | 
 |                                               min_parameter_block_position); | 
 |     } | 
 |   } | 
 |   return min_parameter_block_position; | 
 | } | 
 |  | 
 | #if EIGEN_VERSION_AT_LEAST(3, 2, 2) && defined(CERES_USE_EIGEN_SPARSE) | 
 | Eigen::SparseMatrix<int> CreateBlockJacobian( | 
 |     const TripletSparseMatrix& block_jacobian_transpose) { | 
 |   typedef Eigen::SparseMatrix<int> SparseMatrix; | 
 |   typedef Eigen::Triplet<int> Triplet; | 
 |  | 
 |   const int* rows = block_jacobian_transpose.rows(); | 
 |   const int* cols = block_jacobian_transpose.cols(); | 
 |   int num_nonzeros = block_jacobian_transpose.num_nonzeros(); | 
 |   vector<Triplet> triplets; | 
 |   triplets.reserve(num_nonzeros); | 
 |   for (int i = 0; i < num_nonzeros; ++i) { | 
 |     triplets.push_back(Triplet(cols[i], rows[i], 1)); | 
 |   } | 
 |  | 
 |   SparseMatrix block_jacobian(block_jacobian_transpose.num_cols(), | 
 |                               block_jacobian_transpose.num_rows()); | 
 |   block_jacobian.setFromTriplets(triplets.begin(), triplets.end()); | 
 |   return block_jacobian; | 
 | } | 
 | #endif | 
 |  | 
 | void OrderingForSparseNormalCholeskyUsingSuiteSparse( | 
 |     const TripletSparseMatrix& tsm_block_jacobian_transpose, | 
 |     const vector<ParameterBlock*>& parameter_blocks, | 
 |     const ParameterBlockOrdering& parameter_block_ordering, | 
 |     int* ordering) { | 
 | #ifdef CERES_NO_SUITESPARSE | 
 |   LOG(FATAL) << "Congratulations, you found a Ceres bug! " | 
 |              << "Please report this error to the developers."; | 
 | #else | 
 |   SuiteSparse ss; | 
 |   cholmod_sparse* block_jacobian_transpose = | 
 |       ss.CreateSparseMatrix( | 
 |           const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose)); | 
 |  | 
 |   // No CAMD or the user did not supply a useful ordering, then just | 
 |   // use regular AMD. | 
 |   if (parameter_block_ordering.NumGroups() <= 1 || | 
 |       !SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) { | 
 |     ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]); | 
 |   } else { | 
 |     vector<int> constraints; | 
 |     for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |       constraints.push_back( | 
 |           parameter_block_ordering.GroupId( | 
 |               parameter_blocks[i]->mutable_user_state())); | 
 |     } | 
 |     ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose, | 
 |                                                    &constraints[0], | 
 |                                                    ordering); | 
 |   } | 
 |  | 
 |   ss.Free(block_jacobian_transpose); | 
 | #endif  // CERES_NO_SUITESPARSE | 
 | } | 
 |  | 
 | void OrderingForSparseNormalCholeskyUsingCXSparse( | 
 |     const TripletSparseMatrix& tsm_block_jacobian_transpose, | 
 |     int* ordering) { | 
 | #ifdef CERES_NO_CXSPARSE | 
 |   LOG(FATAL) << "Congratulations, you found a Ceres bug! " | 
 |              << "Please report this error to the developers."; | 
 | #else  // CERES_NO_CXSPARSE | 
 |   // CXSparse works with J'J instead of J'. So compute the block | 
 |   // sparsity for J'J and compute an approximate minimum degree | 
 |   // ordering. | 
 |   CXSparse cxsparse; | 
 |   cs_di* block_jacobian_transpose; | 
 |   block_jacobian_transpose = | 
 |       cxsparse.CreateSparseMatrix( | 
 |             const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose)); | 
 |   cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose); | 
 |   cs_di* block_hessian = | 
 |       cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian); | 
 |   cxsparse.Free(block_jacobian); | 
 |   cxsparse.Free(block_jacobian_transpose); | 
 |  | 
 |   cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, ordering); | 
 |   cxsparse.Free(block_hessian); | 
 | #endif  // CERES_NO_CXSPARSE | 
 | } | 
 |  | 
 |  | 
 | #if EIGEN_VERSION_AT_LEAST(3, 2, 2) | 
 | void OrderingForSparseNormalCholeskyUsingEigenSparse( | 
 |     const TripletSparseMatrix& tsm_block_jacobian_transpose, | 
 |     int* ordering) { | 
 | #ifndef CERES_USE_EIGEN_SPARSE | 
 |   LOG(FATAL) << | 
 |       "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE " | 
 |       "because Ceres was not built with support for " | 
 |       "Eigen's SimplicialLDLT decomposition. " | 
 |       "This requires enabling building with -DEIGENSPARSE=ON."; | 
 | #else | 
 |  | 
 |   // This conversion from a TripletSparseMatrix to a Eigen::Triplet | 
 |   // matrix is unfortunate, but unavoidable for now. It is not a | 
 |   // significant performance penalty in the grand scheme of | 
 |   // things. The right thing to do here would be to get a compressed | 
 |   // row sparse matrix representation of the jacobian and go from | 
 |   // there. But that is a project for another day. | 
 |   typedef Eigen::SparseMatrix<int> SparseMatrix; | 
 |  | 
 |   const SparseMatrix block_jacobian = | 
 |       CreateBlockJacobian(tsm_block_jacobian_transpose); | 
 |   const SparseMatrix block_hessian = | 
 |       block_jacobian.transpose() * block_jacobian; | 
 |  | 
 |   Eigen::AMDOrdering<int> amd_ordering; | 
 |   Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm; | 
 |   amd_ordering(block_hessian, perm); | 
 |   for (int i = 0; i < block_hessian.rows(); ++i) { | 
 |     ordering[i] = perm.indices()[i]; | 
 |   } | 
 | #endif  // CERES_USE_EIGEN_SPARSE | 
 | } | 
 | #endif | 
 |  | 
 | }  // namespace | 
 |  | 
 | bool ApplyOrdering(const ProblemImpl::ParameterMap& parameter_map, | 
 |                    const ParameterBlockOrdering& ordering, | 
 |                    Program* program, | 
 |                    string* error) { | 
 |   const int num_parameter_blocks =  program->NumParameterBlocks(); | 
 |   if (ordering.NumElements() != num_parameter_blocks) { | 
 |     *error = StringPrintf("User specified ordering does not have the same " | 
 |                           "number of parameters as the problem. The problem" | 
 |                           "has %d blocks while the ordering has %d blocks.", | 
 |                           num_parameter_blocks, | 
 |                           ordering.NumElements()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   vector<ParameterBlock*>* parameter_blocks = | 
 |       program->mutable_parameter_blocks(); | 
 |   parameter_blocks->clear(); | 
 |  | 
 |   const map<int, set<double*> >& groups = ordering.group_to_elements(); | 
 |   for (map<int, set<double*> >::const_iterator group_it = groups.begin(); | 
 |        group_it != groups.end(); | 
 |        ++group_it) { | 
 |     const set<double*>& group = group_it->second; | 
 |     for (set<double*>::const_iterator parameter_block_ptr_it = group.begin(); | 
 |          parameter_block_ptr_it != group.end(); | 
 |          ++parameter_block_ptr_it) { | 
 |       ProblemImpl::ParameterMap::const_iterator parameter_block_it = | 
 |           parameter_map.find(*parameter_block_ptr_it); | 
 |       if (parameter_block_it == parameter_map.end()) { | 
 |         *error = StringPrintf("User specified ordering contains a pointer " | 
 |                               "to a double that is not a parameter block in " | 
 |                               "the problem. The invalid double is in group: %d", | 
 |                               group_it->first); | 
 |         return false; | 
 |       } | 
 |       parameter_blocks->push_back(parameter_block_it->second); | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool LexicographicallyOrderResidualBlocks( | 
 |     const int size_of_first_elimination_group, | 
 |     Program* program, | 
 |     string* error) { | 
 |   CHECK_GE(size_of_first_elimination_group, 1) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   // Create a histogram of the number of residuals for each E block. There is an | 
 |   // extra bucket at the end to catch all non-eliminated F blocks. | 
 |   vector<int> residual_blocks_per_e_block(size_of_first_elimination_group + 1); | 
 |   vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); | 
 |   vector<int> min_position_per_residual(residual_blocks->size()); | 
 |   for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |     ResidualBlock* residual_block = (*residual_blocks)[i]; | 
 |     int position = MinParameterBlock(residual_block, | 
 |                                      size_of_first_elimination_group); | 
 |     min_position_per_residual[i] = position; | 
 |     DCHECK_LE(position, size_of_first_elimination_group); | 
 |     residual_blocks_per_e_block[position]++; | 
 |   } | 
 |  | 
 |   // Run a cumulative sum on the histogram, to obtain offsets to the start of | 
 |   // each histogram bucket (where each bucket is for the residuals for that | 
 |   // E-block). | 
 |   vector<int> offsets(size_of_first_elimination_group + 1); | 
 |   std::partial_sum(residual_blocks_per_e_block.begin(), | 
 |                    residual_blocks_per_e_block.end(), | 
 |                    offsets.begin()); | 
 |   CHECK_EQ(offsets.back(), residual_blocks->size()) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   CHECK(find(residual_blocks_per_e_block.begin(), | 
 |              residual_blocks_per_e_block.end() - 1, 0) != | 
 |         residual_blocks_per_e_block.end()) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   // Fill in each bucket with the residual blocks for its corresponding E block. | 
 |   // Each bucket is individually filled from the back of the bucket to the front | 
 |   // of the bucket. The filling order among the buckets is dictated by the | 
 |   // residual blocks. This loop uses the offsets as counters; subtracting one | 
 |   // from each offset as a residual block is placed in the bucket. When the | 
 |   // filling is finished, the offset pointerts should have shifted down one | 
 |   // entry (this is verified below). | 
 |   vector<ResidualBlock*> reordered_residual_blocks( | 
 |       (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL)); | 
 |   for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |     int bucket = min_position_per_residual[i]; | 
 |  | 
 |     // Decrement the cursor, which should now point at the next empty position. | 
 |     offsets[bucket]--; | 
 |  | 
 |     // Sanity. | 
 |     CHECK(reordered_residual_blocks[offsets[bucket]] == NULL) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |  | 
 |     reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i]; | 
 |   } | 
 |  | 
 |   // Sanity check #1: The difference in bucket offsets should match the | 
 |   // histogram sizes. | 
 |   for (int i = 0; i < size_of_first_elimination_group; ++i) { | 
 |     CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i]) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |   } | 
 |   // Sanity check #2: No NULL's left behind. | 
 |   for (int i = 0; i < reordered_residual_blocks.size(); ++i) { | 
 |     CHECK(reordered_residual_blocks[i] != NULL) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |   } | 
 |  | 
 |   // Now that the residuals are collected by E block, swap them in place. | 
 |   swap(*program->mutable_residual_blocks(), reordered_residual_blocks); | 
 |   return true; | 
 | } | 
 |  | 
 | // Pre-order the columns corresponding to the schur complement if | 
 | // possible. | 
 | void MaybeReorderSchurComplementColumnsUsingSuiteSparse( | 
 |     const ParameterBlockOrdering& parameter_block_ordering, | 
 |     Program* program) { | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |   SuiteSparse ss; | 
 |   if (!SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   vector<int> constraints; | 
 |   vector<ParameterBlock*>& parameter_blocks = | 
 |       *(program->mutable_parameter_blocks()); | 
 |  | 
 |   for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |     constraints.push_back( | 
 |         parameter_block_ordering.GroupId( | 
 |             parameter_blocks[i]->mutable_user_state())); | 
 |   } | 
 |  | 
 |   // Renumber the entries of constraints to be contiguous integers | 
 |   // as camd requires that the group ids be in the range [0, | 
 |   // parameter_blocks.size() - 1]. | 
 |   MapValuesToContiguousRange(constraints.size(), &constraints[0]); | 
 |  | 
 |   // Compute a block sparse presentation of J'. | 
 |   scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
 |       program->CreateJacobianBlockSparsityTranspose()); | 
 |  | 
 |   cholmod_sparse* block_jacobian_transpose = | 
 |       ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get()); | 
 |  | 
 |   vector<int> ordering(parameter_blocks.size(), 0); | 
 |   ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose, | 
 |                                                  &constraints[0], | 
 |                                                  &ordering[0]); | 
 |   ss.Free(block_jacobian_transpose); | 
 |  | 
 |   const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks); | 
 |   for (int i = 0; i < program->NumParameterBlocks(); ++i) { | 
 |     parameter_blocks[i] = parameter_blocks_copy[ordering[i]]; | 
 |   } | 
 |  | 
 |   program->SetParameterOffsetsAndIndex(); | 
 | #endif | 
 | } | 
 |  | 
 | void MaybeReorderSchurComplementColumnsUsingEigen( | 
 |     const int size_of_first_elimination_group, | 
 |     const ProblemImpl::ParameterMap& parameter_map, | 
 |     Program* program) { | 
 | #if !EIGEN_VERSION_AT_LEAST(3, 2, 2) || !defined(CERES_USE_EIGEN_SPARSE) | 
 |   return; | 
 | #else | 
 |  | 
 |   scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
 |       program->CreateJacobianBlockSparsityTranspose()); | 
 |  | 
 |   typedef Eigen::SparseMatrix<int> SparseMatrix; | 
 |   const SparseMatrix block_jacobian = | 
 |       CreateBlockJacobian(*tsm_block_jacobian_transpose); | 
 |   const int num_rows = block_jacobian.rows(); | 
 |   const int num_cols = block_jacobian.cols(); | 
 |  | 
 |   // Vertically partition the jacobian in parameter blocks of type E | 
 |   // and F. | 
 |   const SparseMatrix E = | 
 |       block_jacobian.block(0, | 
 |                            0, | 
 |                            num_rows, | 
 |                            size_of_first_elimination_group); | 
 |   const SparseMatrix F = | 
 |       block_jacobian.block(0, | 
 |                            size_of_first_elimination_group, | 
 |                            num_rows, | 
 |                            num_cols - size_of_first_elimination_group); | 
 |  | 
 |   // Block sparsity pattern of the schur complement. | 
 |   const SparseMatrix block_schur_complement = | 
 |       F.transpose() * F - F.transpose() * E * E.transpose() * F; | 
 |  | 
 |   Eigen::AMDOrdering<int> amd_ordering; | 
 |   Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm; | 
 |   amd_ordering(block_schur_complement, perm); | 
 |  | 
 |   const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); | 
 |   vector<ParameterBlock*> ordering(num_cols); | 
 |  | 
 |   // The ordering of the first size_of_first_elimination_group does | 
 |   // not matter, so we preserve the existing ordering. | 
 |   for (int i = 0; i < size_of_first_elimination_group; ++i) { | 
 |     ordering[i] = parameter_blocks[i]; | 
 |   } | 
 |  | 
 |   // For the rest of the blocks, use the ordering computed using AMD. | 
 |   for (int i = 0; i < block_schur_complement.cols(); ++i) { | 
 |     ordering[size_of_first_elimination_group + i] = | 
 |         parameter_blocks[size_of_first_elimination_group + perm.indices()[i]]; | 
 |   } | 
 |  | 
 |   swap(*program->mutable_parameter_blocks(), ordering); | 
 |   program->SetParameterOffsetsAndIndex(); | 
 | #endif | 
 | } | 
 |  | 
 | bool ReorderProgramForSchurTypeLinearSolver( | 
 |     const LinearSolverType linear_solver_type, | 
 |     const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |     const ProblemImpl::ParameterMap& parameter_map, | 
 |     ParameterBlockOrdering* parameter_block_ordering, | 
 |     Program* program, | 
 |     string* error) { | 
 |   if (parameter_block_ordering->NumElements() != | 
 |       program->NumParameterBlocks()) { | 
 |     *error = StringPrintf( | 
 |         "The program has %d parameter blocks, but the parameter block " | 
 |         "ordering has %d parameter blocks.", | 
 |         program->NumParameterBlocks(), | 
 |         parameter_block_ordering->NumElements()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (parameter_block_ordering->NumGroups() == 1) { | 
 |     // If the user supplied an parameter_block_ordering with just one | 
 |     // group, it is equivalent to the user supplying NULL as an | 
 |     // parameter_block_ordering. Ceres is completely free to choose the | 
 |     // parameter block ordering as it sees fit. For Schur type solvers, | 
 |     // this means that the user wishes for Ceres to identify the | 
 |     // e_blocks, which we do by computing a maximal independent set. | 
 |     vector<ParameterBlock*> schur_ordering; | 
 |     const int size_of_first_elimination_group = | 
 |         ComputeStableSchurOrdering(*program, &schur_ordering); | 
 |  | 
 |     CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks()) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |  | 
 |     // Update the parameter_block_ordering object. | 
 |     for (int i = 0; i < schur_ordering.size(); ++i) { | 
 |       double* parameter_block = schur_ordering[i]->mutable_user_state(); | 
 |       const int group_id = (i < size_of_first_elimination_group) ? 0 : 1; | 
 |       parameter_block_ordering->AddElementToGroup(parameter_block, group_id); | 
 |     } | 
 |  | 
 |     // We could call ApplyOrdering but this is cheaper and | 
 |     // simpler. | 
 |     swap(*program->mutable_parameter_blocks(), schur_ordering); | 
 |   } else { | 
 |     // The user provided an ordering with more than one elimination | 
 |     // group. | 
 |  | 
 |     // Verify that the first elimination group is an independent set. | 
 |     const set<double*>& first_elimination_group = | 
 |         parameter_block_ordering | 
 |         ->group_to_elements() | 
 |         .begin() | 
 |         ->second; | 
 |     if (!program->IsParameterBlockSetIndependent(first_elimination_group)) { | 
 |       *error = | 
 |           StringPrintf("The first elimination group in the parameter block " | 
 |                        "ordering of size %zd is not an independent set", | 
 |                        first_elimination_group.size()); | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (!ApplyOrdering(parameter_map, | 
 |                        *parameter_block_ordering, | 
 |                        program, | 
 |                        error)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |   const int size_of_first_elimination_group = | 
 |       parameter_block_ordering->group_to_elements().begin()->second.size(); | 
 |  | 
 |   if (linear_solver_type == SPARSE_SCHUR) { | 
 |     if (sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
 |       MaybeReorderSchurComplementColumnsUsingSuiteSparse( | 
 |           *parameter_block_ordering, | 
 |           program); | 
 |     } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) { | 
 |       MaybeReorderSchurComplementColumnsUsingEigen( | 
 |           size_of_first_elimination_group, | 
 |           parameter_map, | 
 |           program); | 
 |     } | 
 |   } | 
 |  | 
 |   // Schur type solvers also require that their residual blocks be | 
 |   // lexicographically ordered. | 
 |   if (!LexicographicallyOrderResidualBlocks(size_of_first_elimination_group, | 
 |                                             program, | 
 |                                             error)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool ReorderProgramForSparseNormalCholesky( | 
 |     const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |     const ParameterBlockOrdering& parameter_block_ordering, | 
 |     Program* program, | 
 |     string* error) { | 
 |   // Compute a block sparse presentation of J'. | 
 |   scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
 |       program->CreateJacobianBlockSparsityTranspose()); | 
 |  | 
 |   vector<int> ordering(program->NumParameterBlocks(), 0); | 
 |   vector<ParameterBlock*>& parameter_blocks = | 
 |       *(program->mutable_parameter_blocks()); | 
 |  | 
 |   if (sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
 |     OrderingForSparseNormalCholeskyUsingSuiteSparse( | 
 |         *tsm_block_jacobian_transpose, | 
 |         parameter_blocks, | 
 |         parameter_block_ordering, | 
 |         &ordering[0]); | 
 |   } else if (sparse_linear_algebra_library_type == CX_SPARSE) { | 
 |     OrderingForSparseNormalCholeskyUsingCXSparse( | 
 |         *tsm_block_jacobian_transpose, | 
 |         &ordering[0]); | 
 |   } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) { | 
 | #if EIGEN_VERSION_AT_LEAST(3, 2, 2) | 
 |        OrderingForSparseNormalCholeskyUsingEigenSparse( | 
 |         *tsm_block_jacobian_transpose, | 
 |         &ordering[0]); | 
 | #else | 
 |     // For Eigen versions less than 3.2.2, there is nothing to do as | 
 |     // older versions of Eigen do not expose a method for doing | 
 |     // symbolic analysis on pre-ordered matrices, so a block | 
 |     // pre-ordering is a bit pointless. | 
 |  | 
 |     return true; | 
 | #endif | 
 |   } | 
 |  | 
 |   // Apply ordering. | 
 |   const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks); | 
 |   for (int i = 0; i < program->NumParameterBlocks(); ++i) { | 
 |     parameter_blocks[i] = parameter_blocks_copy[ordering[i]]; | 
 |   } | 
 |  | 
 |   program->SetParameterOffsetsAndIndex(); | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |