|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | class UnsymmetricLinearSolverTest : public ::testing::Test { | 
|  | protected : | 
|  | virtual void SetUp() { | 
|  | scoped_ptr<LinearLeastSquaresProblem> problem( | 
|  | CreateLinearLeastSquaresProblemFromId(0)); | 
|  |  | 
|  | CHECK_NOTNULL(problem.get()); | 
|  | A_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
|  | b_.reset(problem->b.release()); | 
|  | D_.reset(problem->D.release()); | 
|  | sol_unregularized_.reset(problem->x.release()); | 
|  | sol_regularized_.reset(problem->x_D.release()); | 
|  | } | 
|  |  | 
|  | void TestSolver(const LinearSolver::Options& options) { | 
|  | LinearSolver::PerSolveOptions per_solve_options; | 
|  | LinearSolver::Summary unregularized_solve_summary; | 
|  | LinearSolver::Summary regularized_solve_summary; | 
|  | Vector x_unregularized(A_->num_cols()); | 
|  | Vector x_regularized(A_->num_cols()); | 
|  |  | 
|  | scoped_ptr<SparseMatrix> transformed_A; | 
|  |  | 
|  | if (options.type == DENSE_QR || | 
|  | options.type == DENSE_NORMAL_CHOLESKY) { | 
|  | transformed_A.reset(new DenseSparseMatrix(*A_)); | 
|  | } else if (options.type == SPARSE_NORMAL_CHOLESKY) { | 
|  | CompressedRowSparseMatrix* crsm =  new CompressedRowSparseMatrix(*A_); | 
|  | // Add row/column blocks structure. | 
|  | for (int i = 0; i < A_->num_rows(); ++i) { | 
|  | crsm->mutable_row_blocks()->push_back(1); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < A_->num_cols(); ++i) { | 
|  | crsm->mutable_col_blocks()->push_back(1); | 
|  | } | 
|  | transformed_A.reset(crsm); | 
|  | } else { | 
|  | LOG(FATAL) << "Unknown linear solver : " << options.type; | 
|  | } | 
|  |  | 
|  | // Unregularized | 
|  | scoped_ptr<LinearSolver> solver(LinearSolver::Create(options)); | 
|  | unregularized_solve_summary = | 
|  | solver->Solve(transformed_A.get(), | 
|  | b_.get(), | 
|  | per_solve_options, | 
|  | x_unregularized.data()); | 
|  |  | 
|  | // Sparsity structure is changing, reset the solver. | 
|  | solver.reset(LinearSolver::Create(options)); | 
|  | // Regularized solution | 
|  | per_solve_options.D = D_.get(); | 
|  | regularized_solve_summary = | 
|  | solver->Solve(transformed_A.get(), | 
|  | b_.get(), | 
|  | per_solve_options, | 
|  | x_regularized.data()); | 
|  |  | 
|  | EXPECT_EQ(unregularized_solve_summary.termination_type, | 
|  | LINEAR_SOLVER_SUCCESS); | 
|  |  | 
|  | for (int i = 0; i < A_->num_cols(); ++i) { | 
|  | EXPECT_NEAR(sol_unregularized_[i], x_unregularized[i], 1e-8) | 
|  | << "\nExpected: " | 
|  | << ConstVectorRef(sol_unregularized_.get(), | 
|  | A_->num_cols()).transpose() | 
|  | << "\nActual: " << x_unregularized.transpose(); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(regularized_solve_summary.termination_type, | 
|  | LINEAR_SOLVER_SUCCESS); | 
|  | for (int i = 0; i < A_->num_cols(); ++i) { | 
|  | EXPECT_NEAR(sol_regularized_[i], x_regularized[i], 1e-8) | 
|  | << "\nExpected: " | 
|  | << ConstVectorRef(sol_regularized_.get(), A_->num_cols()).transpose() | 
|  | << "\nActual: " << x_regularized.transpose(); | 
|  | } | 
|  | } | 
|  |  | 
|  | scoped_ptr<TripletSparseMatrix> A_; | 
|  | scoped_array<double> b_; | 
|  | scoped_array<double> D_; | 
|  | scoped_array<double> sol_unregularized_; | 
|  | scoped_array<double> sol_regularized_; | 
|  | }; | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, EigenDenseQR) { | 
|  | LinearSolver::Options options; | 
|  | options.type = DENSE_QR; | 
|  | options.dense_linear_algebra_library_type = EIGEN; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, EigenDenseNormalCholesky) { | 
|  | LinearSolver::Options options; | 
|  | options.dense_linear_algebra_library_type = EIGEN; | 
|  | options.type = DENSE_NORMAL_CHOLESKY; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_LAPACK | 
|  | TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseQR) { | 
|  | LinearSolver::Options options; | 
|  | options.type = DENSE_QR; | 
|  | options.dense_linear_algebra_library_type = LAPACK; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseNormalCholesky) { | 
|  | LinearSolver::Options options; | 
|  | options.dense_linear_algebra_library_type = LAPACK; | 
|  | options.type = DENSE_NORMAL_CHOLESKY; | 
|  | TestSolver(options); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingSuiteSparsePreOrdering) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.use_postordering = false; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingSuiteSparsePostOrdering) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.use_postordering = true; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingSuiteSparseDynamicSparsity) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.dynamic_sparsity = true; | 
|  | TestSolver(options); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingCXSparsePreOrdering) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = CX_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.use_postordering = false; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingCXSparsePostOrdering) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = CX_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.use_postordering = true; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingCXSparseDynamicSparsity) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = CX_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.dynamic_sparsity = true; | 
|  | TestSolver(options); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CERES_USE_EIGEN_SPARSE | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingEigenPreOrdering) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.use_postordering = false; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingEigenPostOrdering) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.use_postordering = true; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | TEST_F(UnsymmetricLinearSolverTest, | 
|  | SparseNormalCholeskyUsingEigenDynamicSparsity) { | 
|  | LinearSolver::Options options; | 
|  | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.dynamic_sparsity = true; | 
|  | TestSolver(options); | 
|  | } | 
|  |  | 
|  | #endif  // CERES_USE_EIGEN_SPARSE | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |