|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: wjr@google.com (William Rucklidge) | 
|  | // | 
|  | // This file contains tests for the GradientChecker class. | 
|  |  | 
|  | #include "ceres/gradient_checker.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstdlib> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/random.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // We pick a (non-quadratic) function whose derivative are easy: | 
|  | // | 
|  | //    f = exp(- a' x). | 
|  | //   df = - f a. | 
|  | // | 
|  | // where 'a' is a vector of the same size as 'x'. In the block | 
|  | // version, they are both block vectors, of course. | 
|  | class GoodTestTerm : public CostFunction { | 
|  | public: | 
|  | GoodTestTerm(int arity, int const *dim) : arity_(arity) { | 
|  | // Make 'arity' random vectors. | 
|  | a_.resize(arity_); | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | a_[j].resize(dim[j]); | 
|  | for (int u = 0; u < dim[j]; ++u) { | 
|  | a_[j][u] = 2.0 * RandDouble() - 1.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < arity_; i++) { | 
|  | mutable_parameter_block_sizes()->push_back(dim[i]); | 
|  | } | 
|  | set_num_residuals(1); | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | // Compute a . x. | 
|  | double ax = 0; | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
|  | ax += a_[j][u] * parameters[j][u]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is the cost, but also appears as a factor | 
|  | // in the derivatives. | 
|  | double f = *residuals = exp(-ax); | 
|  |  | 
|  | // Accumulate 1st order derivatives. | 
|  | if (jacobians) { | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | if (jacobians[j]) { | 
|  | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
|  | // See comments before class. | 
|  | jacobians[j][u] = - f * a_[j][u]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | int arity_; | 
|  | vector<vector<double> > a_;  // our vectors. | 
|  | }; | 
|  |  | 
|  | class BadTestTerm : public CostFunction { | 
|  | public: | 
|  | BadTestTerm(int arity, int const *dim) : arity_(arity) { | 
|  | // Make 'arity' random vectors. | 
|  | a_.resize(arity_); | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | a_[j].resize(dim[j]); | 
|  | for (int u = 0; u < dim[j]; ++u) { | 
|  | a_[j][u] = 2.0 * RandDouble() - 1.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < arity_; i++) { | 
|  | mutable_parameter_block_sizes()->push_back(dim[i]); | 
|  | } | 
|  | set_num_residuals(1); | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | // Compute a . x. | 
|  | double ax = 0; | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
|  | ax += a_[j][u] * parameters[j][u]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is the cost, but also appears as a factor | 
|  | // in the derivatives. | 
|  | double f = *residuals = exp(-ax); | 
|  |  | 
|  | // Accumulate 1st order derivatives. | 
|  | if (jacobians) { | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | if (jacobians[j]) { | 
|  | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
|  | // See comments before class. | 
|  | jacobians[j][u] = - f * a_[j][u] + 0.001; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | int arity_; | 
|  | vector<vector<double> > a_;  // our vectors. | 
|  | }; | 
|  |  | 
|  | TEST(GradientChecker, SmokeTest) { | 
|  | srand(5); | 
|  |  | 
|  | // Test with 3 blocks of size 2, 3 and 4. | 
|  | int const arity = 3; | 
|  | int const dim[arity] = { 2, 3, 4 }; | 
|  |  | 
|  | // Make a random set of blocks. | 
|  | FixedArray<double*> parameters(arity); | 
|  | for (int j = 0; j < arity; ++j) { | 
|  | parameters[j] = new double[dim[j]]; | 
|  | for (int u = 0; u < dim[j]; ++u) { | 
|  | parameters[j][u] = 2.0 * RandDouble() - 1.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make a term and probe it. | 
|  | GoodTestTerm good_term(arity, dim); | 
|  | typedef GradientChecker<GoodTestTerm, 1, 2, 3, 4> GoodTermGradientChecker; | 
|  | EXPECT_TRUE(GoodTermGradientChecker::Probe( | 
|  | parameters.get(), 1e-6, &good_term, NULL)); | 
|  |  | 
|  | BadTestTerm bad_term(arity, dim); | 
|  | typedef GradientChecker<BadTestTerm, 1, 2, 3, 4> BadTermGradientChecker; | 
|  | EXPECT_FALSE(BadTermGradientChecker::Probe( | 
|  | parameters.get(), 1e-6, &bad_term, NULL)); | 
|  |  | 
|  | for (int j = 0; j < arity; j++) { | 
|  | delete[] parameters[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |