| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | //         keir@google.com (Keir Mierle) | 
 |  | 
 | #include "ceres/problem_impl.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstddef> | 
 | #include <set> | 
 | #include <string> | 
 | #include <utility> | 
 | #include <vector> | 
 | #include "ceres/casts.h" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/crs_matrix.h" | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/loss_function.h" | 
 | #include "ceres/map_util.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/stl_util.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | typedef map<double*, internal::ParameterBlock*> ParameterMap; | 
 |  | 
 | internal::ParameterBlock* FindParameterBlockOrDie( | 
 |     const ParameterMap& parameter_map, | 
 |     double* parameter_block) { | 
 |   ParameterMap::const_iterator it = parameter_map.find(parameter_block); | 
 |   CHECK(it != parameter_map.end()) | 
 |       << "Parameter block not found: " << parameter_block; | 
 |   return it->second; | 
 | } | 
 |  | 
 | // Returns true if two regions of memory, a and b, with sizes size_a and size_b | 
 | // respectively, overlap. | 
 | static bool RegionsAlias(const double* a, int size_a, | 
 |                          const double* b, int size_b) { | 
 |   return (a < b) ? b < (a + size_a) | 
 |                  : a < (b + size_b); | 
 | } | 
 |  | 
 | static void CheckForNoAliasing(double* existing_block, | 
 |                                int existing_block_size, | 
 |                                double* new_block, | 
 |                                int new_block_size) { | 
 |   CHECK(!RegionsAlias(existing_block, existing_block_size, | 
 |                       new_block, new_block_size)) | 
 |       << "Aliasing detected between existing parameter block at memory " | 
 |       << "location " << existing_block | 
 |       << " and has size " << existing_block_size << " with new parameter " | 
 |       << "block that has memory adderss " << new_block << " and would have " | 
 |       << "size " << new_block_size << "."; | 
 | } | 
 |  | 
 | ParameterBlock* ProblemImpl::InternalAddParameterBlock(double* values, | 
 |                                                        int size) { | 
 |   CHECK(values != NULL) << "Null pointer passed to AddParameterBlock " | 
 |                         << "for a parameter with size " << size; | 
 |  | 
 |   // Ignore the request if there is a block for the given pointer already. | 
 |   ParameterMap::iterator it = parameter_block_map_.find(values); | 
 |   if (it != parameter_block_map_.end()) { | 
 |     if (!options_.disable_all_safety_checks) { | 
 |       int existing_size = it->second->Size(); | 
 |       CHECK(size == existing_size) | 
 |           << "Tried adding a parameter block with the same double pointer, " | 
 |           << values << ", twice, but with different block sizes. Original " | 
 |           << "size was " << existing_size << " but new size is " | 
 |           << size; | 
 |     } | 
 |     return it->second; | 
 |   } | 
 |  | 
 |   if (!options_.disable_all_safety_checks) { | 
 |     // Before adding the parameter block, also check that it doesn't alias any | 
 |     // other parameter blocks. | 
 |     if (!parameter_block_map_.empty()) { | 
 |       ParameterMap::iterator lb = parameter_block_map_.lower_bound(values); | 
 |  | 
 |       // If lb is not the first block, check the previous block for aliasing. | 
 |       if (lb != parameter_block_map_.begin()) { | 
 |         ParameterMap::iterator previous = lb; | 
 |         --previous; | 
 |         CheckForNoAliasing(previous->first, | 
 |                            previous->second->Size(), | 
 |                            values, | 
 |                            size); | 
 |       } | 
 |  | 
 |       // If lb is not off the end, check lb for aliasing. | 
 |       if (lb != parameter_block_map_.end()) { | 
 |         CheckForNoAliasing(lb->first, | 
 |                            lb->second->Size(), | 
 |                            values, | 
 |                            size); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Pass the index of the new parameter block as well to keep the index in | 
 |   // sync with the position of the parameter in the program's parameter vector. | 
 |   ParameterBlock* new_parameter_block = | 
 |       new ParameterBlock(values, size, program_->parameter_blocks_.size()); | 
 |  | 
 |   // For dynamic problems, add the list of dependent residual blocks, which is | 
 |   // empty to start. | 
 |   if (options_.enable_fast_parameter_block_removal) { | 
 |     new_parameter_block->EnableResidualBlockDependencies(); | 
 |   } | 
 |   parameter_block_map_[values] = new_parameter_block; | 
 |   program_->parameter_blocks_.push_back(new_parameter_block); | 
 |   return new_parameter_block; | 
 | } | 
 |  | 
 | // Deletes the residual block in question, assuming there are no other | 
 | // references to it inside the problem (e.g. by another parameter). Referenced | 
 | // cost and loss functions are tucked away for future deletion, since it is not | 
 | // possible to know whether other parts of the problem depend on them without | 
 | // doing a full scan. | 
 | void ProblemImpl::DeleteBlock(ResidualBlock* residual_block) { | 
 |   // The const casts here are legit, since ResidualBlock holds these | 
 |   // pointers as const pointers but we have ownership of them and | 
 |   // have the right to destroy them when the destructor is called. | 
 |   if (options_.cost_function_ownership == TAKE_OWNERSHIP && | 
 |       residual_block->cost_function() != NULL) { | 
 |     cost_functions_to_delete_.push_back( | 
 |         const_cast<CostFunction*>(residual_block->cost_function())); | 
 |   } | 
 |   if (options_.loss_function_ownership == TAKE_OWNERSHIP && | 
 |       residual_block->loss_function() != NULL) { | 
 |     loss_functions_to_delete_.push_back( | 
 |         const_cast<LossFunction*>(residual_block->loss_function())); | 
 |   } | 
 |   delete residual_block; | 
 | } | 
 |  | 
 | // Deletes the parameter block in question, assuming there are no other | 
 | // references to it inside the problem (e.g. by any residual blocks). | 
 | // Referenced parameterizations are tucked away for future deletion, since it | 
 | // is not possible to know whether other parts of the problem depend on them | 
 | // without doing a full scan. | 
 | void ProblemImpl::DeleteBlock(ParameterBlock* parameter_block) { | 
 |   if (options_.local_parameterization_ownership == TAKE_OWNERSHIP && | 
 |       parameter_block->local_parameterization() != NULL) { | 
 |     local_parameterizations_to_delete_.push_back( | 
 |         parameter_block->mutable_local_parameterization()); | 
 |   } | 
 |   parameter_block_map_.erase(parameter_block->mutable_user_state()); | 
 |   delete parameter_block; | 
 | } | 
 |  | 
 | ProblemImpl::ProblemImpl() : program_(new internal::Program) {} | 
 | ProblemImpl::ProblemImpl(const Problem::Options& options) | 
 |     : options_(options), | 
 |       program_(new internal::Program) {} | 
 |  | 
 | ProblemImpl::~ProblemImpl() { | 
 |   // Collect the unique cost/loss functions and delete the residuals. | 
 |   const int num_residual_blocks = program_->residual_blocks_.size(); | 
 |   cost_functions_to_delete_.reserve(num_residual_blocks); | 
 |   loss_functions_to_delete_.reserve(num_residual_blocks); | 
 |   for (int i = 0; i < program_->residual_blocks_.size(); ++i) { | 
 |     DeleteBlock(program_->residual_blocks_[i]); | 
 |   } | 
 |  | 
 |   // Collect the unique parameterizations and delete the parameters. | 
 |   for (int i = 0; i < program_->parameter_blocks_.size(); ++i) { | 
 |     DeleteBlock(program_->parameter_blocks_[i]); | 
 |   } | 
 |  | 
 |   // Delete the owned cost/loss functions and parameterizations. | 
 |   STLDeleteUniqueContainerPointers(local_parameterizations_to_delete_.begin(), | 
 |                                    local_parameterizations_to_delete_.end()); | 
 |   STLDeleteUniqueContainerPointers(cost_functions_to_delete_.begin(), | 
 |                                    cost_functions_to_delete_.end()); | 
 |   STLDeleteUniqueContainerPointers(loss_functions_to_delete_.begin(), | 
 |                                    loss_functions_to_delete_.end()); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     const vector<double*>& parameter_blocks) { | 
 |   CHECK_NOTNULL(cost_function); | 
 |   CHECK_EQ(parameter_blocks.size(), | 
 |            cost_function->parameter_block_sizes().size()); | 
 |  | 
 |   // Check the sizes match. | 
 |   const vector<int16>& parameter_block_sizes = | 
 |       cost_function->parameter_block_sizes(); | 
 |  | 
 |   if (!options_.disable_all_safety_checks) { | 
 |     CHECK_EQ(parameter_block_sizes.size(), parameter_blocks.size()) | 
 |         << "Number of blocks input is different than the number of blocks " | 
 |         << "that the cost function expects."; | 
 |  | 
 |     // Check for duplicate parameter blocks. | 
 |     vector<double*> sorted_parameter_blocks(parameter_blocks); | 
 |     sort(sorted_parameter_blocks.begin(), sorted_parameter_blocks.end()); | 
 |     vector<double*>::const_iterator duplicate_items = | 
 |         unique(sorted_parameter_blocks.begin(), | 
 |                sorted_parameter_blocks.end()); | 
 |     if (duplicate_items != sorted_parameter_blocks.end()) { | 
 |       string blocks; | 
 |       for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |         blocks += StringPrintf(" %p ", parameter_blocks[i]); | 
 |       } | 
 |  | 
 |       LOG(FATAL) << "Duplicate parameter blocks in a residual parameter " | 
 |                  << "are not allowed. Parameter block pointers: [" | 
 |                  << blocks << "]"; | 
 |     } | 
 |   } | 
 |  | 
 |   // Add parameter blocks and convert the double*'s to parameter blocks. | 
 |   vector<ParameterBlock*> parameter_block_ptrs(parameter_blocks.size()); | 
 |   for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |     parameter_block_ptrs[i] = | 
 |         InternalAddParameterBlock(parameter_blocks[i], | 
 |                                   parameter_block_sizes[i]); | 
 |   } | 
 |  | 
 |   if (!options_.disable_all_safety_checks) { | 
 |     // Check that the block sizes match the block sizes expected by the | 
 |     // cost_function. | 
 |     for (int i = 0; i < parameter_block_ptrs.size(); ++i) { | 
 |       CHECK_EQ(cost_function->parameter_block_sizes()[i], | 
 |                parameter_block_ptrs[i]->Size()) | 
 |           << "The cost function expects parameter block " << i | 
 |           << " of size " << cost_function->parameter_block_sizes()[i] | 
 |           << " but was given a block of size " | 
 |           << parameter_block_ptrs[i]->Size(); | 
 |     } | 
 |   } | 
 |  | 
 |   ResidualBlock* new_residual_block = | 
 |       new ResidualBlock(cost_function, | 
 |                         loss_function, | 
 |                         parameter_block_ptrs, | 
 |                         program_->residual_blocks_.size()); | 
 |  | 
 |   // Add dependencies on the residual to the parameter blocks. | 
 |   if (options_.enable_fast_parameter_block_removal) { | 
 |     for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |       parameter_block_ptrs[i]->AddResidualBlock(new_residual_block); | 
 |     } | 
 |   } | 
 |  | 
 |   program_->residual_blocks_.push_back(new_residual_block); | 
 |   return new_residual_block; | 
 | } | 
 |  | 
 | // Unfortunately, macros don't help much to reduce this code, and var args don't | 
 | // work because of the ambiguous case that there is no loss function. | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2, double* x3) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   residual_parameters.push_back(x3); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2, double* x3, double* x4) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   residual_parameters.push_back(x3); | 
 |   residual_parameters.push_back(x4); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2, double* x3, double* x4, double* x5) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   residual_parameters.push_back(x3); | 
 |   residual_parameters.push_back(x4); | 
 |   residual_parameters.push_back(x5); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, | 
 |     double* x6) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   residual_parameters.push_back(x3); | 
 |   residual_parameters.push_back(x4); | 
 |   residual_parameters.push_back(x5); | 
 |   residual_parameters.push_back(x6); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, | 
 |     double* x6, double* x7) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   residual_parameters.push_back(x3); | 
 |   residual_parameters.push_back(x4); | 
 |   residual_parameters.push_back(x5); | 
 |   residual_parameters.push_back(x6); | 
 |   residual_parameters.push_back(x7); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, | 
 |     double* x6, double* x7, double* x8) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   residual_parameters.push_back(x3); | 
 |   residual_parameters.push_back(x4); | 
 |   residual_parameters.push_back(x5); | 
 |   residual_parameters.push_back(x6); | 
 |   residual_parameters.push_back(x7); | 
 |   residual_parameters.push_back(x8); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | ResidualBlock* ProblemImpl::AddResidualBlock( | 
 |     CostFunction* cost_function, | 
 |     LossFunction* loss_function, | 
 |     double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, | 
 |     double* x6, double* x7, double* x8, double* x9) { | 
 |   vector<double*> residual_parameters; | 
 |   residual_parameters.push_back(x0); | 
 |   residual_parameters.push_back(x1); | 
 |   residual_parameters.push_back(x2); | 
 |   residual_parameters.push_back(x3); | 
 |   residual_parameters.push_back(x4); | 
 |   residual_parameters.push_back(x5); | 
 |   residual_parameters.push_back(x6); | 
 |   residual_parameters.push_back(x7); | 
 |   residual_parameters.push_back(x8); | 
 |   residual_parameters.push_back(x9); | 
 |   return AddResidualBlock(cost_function, loss_function, residual_parameters); | 
 | } | 
 |  | 
 | void ProblemImpl::AddParameterBlock(double* values, int size) { | 
 |   InternalAddParameterBlock(values, size); | 
 | } | 
 |  | 
 | void ProblemImpl::AddParameterBlock( | 
 |     double* values, | 
 |     int size, | 
 |     LocalParameterization* local_parameterization) { | 
 |   ParameterBlock* parameter_block = | 
 |       InternalAddParameterBlock(values, size); | 
 |   if (local_parameterization != NULL) { | 
 |     parameter_block->SetParameterization(local_parameterization); | 
 |   } | 
 | } | 
 |  | 
 | // Delete a block from a vector of blocks, maintaining the indexing invariant. | 
 | // This is done in constant time by moving an element from the end of the | 
 | // vector over the element to remove, then popping the last element. It | 
 | // destroys the ordering in the interest of speed. | 
 | template<typename Block> | 
 | void ProblemImpl::DeleteBlockInVector(vector<Block*>* mutable_blocks, | 
 |                                       Block* block_to_remove) { | 
 |   CHECK_EQ((*mutable_blocks)[block_to_remove->index()], block_to_remove) | 
 |       << "You found a Ceres bug! Block: " << block_to_remove->ToString(); | 
 |  | 
 |   // Prepare the to-be-moved block for the new, lower-in-index position by | 
 |   // setting the index to the blocks final location. | 
 |   Block* tmp = mutable_blocks->back(); | 
 |   tmp->set_index(block_to_remove->index()); | 
 |  | 
 |   // Overwrite the to-be-deleted residual block with the one at the end. | 
 |   (*mutable_blocks)[block_to_remove->index()] = tmp; | 
 |  | 
 |   DeleteBlock(block_to_remove); | 
 |  | 
 |   // The block is gone so shrink the vector of blocks accordingly. | 
 |   mutable_blocks->pop_back(); | 
 | } | 
 |  | 
 | void ProblemImpl::RemoveResidualBlock(ResidualBlock* residual_block) { | 
 |   CHECK_NOTNULL(residual_block); | 
 |  | 
 |   // If needed, remove the parameter dependencies on this residual block. | 
 |   if (options_.enable_fast_parameter_block_removal) { | 
 |     const int num_parameter_blocks_for_residual = | 
 |         residual_block->NumParameterBlocks(); | 
 |     for (int i = 0; i < num_parameter_blocks_for_residual; ++i) { | 
 |       residual_block->parameter_blocks()[i] | 
 |           ->RemoveResidualBlock(residual_block); | 
 |     } | 
 |   } | 
 |   DeleteBlockInVector(program_->mutable_residual_blocks(), residual_block); | 
 | } | 
 |  | 
 | void ProblemImpl::RemoveParameterBlock(double* values) { | 
 |   ParameterBlock* parameter_block = | 
 |       FindParameterBlockOrDie(parameter_block_map_, values); | 
 |  | 
 |   if (options_.enable_fast_parameter_block_removal) { | 
 |     // Copy the dependent residuals from the parameter block because the set of | 
 |     // dependents will change after each call to RemoveResidualBlock(). | 
 |     vector<ResidualBlock*> residual_blocks_to_remove( | 
 |         parameter_block->mutable_residual_blocks()->begin(), | 
 |         parameter_block->mutable_residual_blocks()->end()); | 
 |     for (int i = 0; i < residual_blocks_to_remove.size(); ++i) { | 
 |       RemoveResidualBlock(residual_blocks_to_remove[i]); | 
 |     } | 
 |   } else { | 
 |     // Scan all the residual blocks to remove ones that depend on the parameter | 
 |     // block. Do the scan backwards since the vector changes while iterating. | 
 |     const int num_residual_blocks = NumResidualBlocks(); | 
 |     for (int i = num_residual_blocks - 1; i >= 0; --i) { | 
 |       ResidualBlock* residual_block = | 
 |           (*(program_->mutable_residual_blocks()))[i]; | 
 |       const int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
 |       for (int j = 0; j < num_parameter_blocks; ++j) { | 
 |         if (residual_block->parameter_blocks()[j] == parameter_block) { | 
 |           RemoveResidualBlock(residual_block); | 
 |           // The parameter blocks are guaranteed unique. | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   DeleteBlockInVector(program_->mutable_parameter_blocks(), parameter_block); | 
 | } | 
 |  | 
 | void ProblemImpl::SetParameterBlockConstant(double* values) { | 
 |   FindParameterBlockOrDie(parameter_block_map_, values)->SetConstant(); | 
 | } | 
 |  | 
 | void ProblemImpl::SetParameterBlockVariable(double* values) { | 
 |   FindParameterBlockOrDie(parameter_block_map_, values)->SetVarying(); | 
 | } | 
 |  | 
 | void ProblemImpl::SetParameterization( | 
 |     double* values, | 
 |     LocalParameterization* local_parameterization) { | 
 |   FindParameterBlockOrDie(parameter_block_map_, values) | 
 |       ->SetParameterization(local_parameterization); | 
 | } | 
 |  | 
 | bool ProblemImpl::Evaluate(const Problem::EvaluateOptions& evaluate_options, | 
 |                            double* cost, | 
 |                            vector<double>* residuals, | 
 |                            vector<double>* gradient, | 
 |                            CRSMatrix* jacobian) { | 
 |   if (cost == NULL && | 
 |       residuals == NULL && | 
 |       gradient == NULL && | 
 |       jacobian == NULL) { | 
 |     LOG(INFO) << "Nothing to do."; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If the user supplied residual blocks, then use them, otherwise | 
 |   // take the residual blocks from the underlying program. | 
 |   Program program; | 
 |   *program.mutable_residual_blocks() = | 
 |       ((evaluate_options.residual_blocks.size() > 0) | 
 |        ? evaluate_options.residual_blocks : program_->residual_blocks()); | 
 |  | 
 |   const vector<double*>& parameter_block_ptrs = | 
 |       evaluate_options.parameter_blocks; | 
 |  | 
 |   vector<ParameterBlock*> variable_parameter_blocks; | 
 |   vector<ParameterBlock*>& parameter_blocks = | 
 |       *program.mutable_parameter_blocks(); | 
 |  | 
 |   if (parameter_block_ptrs.size() == 0) { | 
 |     // The user did not provide any parameter blocks, so default to | 
 |     // using all the parameter blocks in the order that they are in | 
 |     // the underlying program object. | 
 |     parameter_blocks = program_->parameter_blocks(); | 
 |   } else { | 
 |     // The user supplied a vector of parameter blocks. Using this list | 
 |     // requires a number of steps. | 
 |  | 
 |     // 1. Convert double* into ParameterBlock* | 
 |     parameter_blocks.resize(parameter_block_ptrs.size()); | 
 |     for (int i = 0; i < parameter_block_ptrs.size(); ++i) { | 
 |       parameter_blocks[i] = | 
 |           FindParameterBlockOrDie(parameter_block_map_, | 
 |                                   parameter_block_ptrs[i]); | 
 |     } | 
 |  | 
 |     // 2. The user may have only supplied a subset of parameter | 
 |     // blocks, so identify the ones that are not supplied by the user | 
 |     // and are NOT constant. These parameter blocks are stored in | 
 |     // variable_parameter_blocks. | 
 |     // | 
 |     // To ensure that the parameter blocks are not included in the | 
 |     // columns of the jacobian, we need to make sure that they are | 
 |     // constant during evaluation and then make them variable again | 
 |     // after we are done. | 
 |     vector<ParameterBlock*> all_parameter_blocks(program_->parameter_blocks()); | 
 |     vector<ParameterBlock*> included_parameter_blocks( | 
 |         program.parameter_blocks()); | 
 |  | 
 |     vector<ParameterBlock*> excluded_parameter_blocks; | 
 |     sort(all_parameter_blocks.begin(), all_parameter_blocks.end()); | 
 |     sort(included_parameter_blocks.begin(), included_parameter_blocks.end()); | 
 |     set_difference(all_parameter_blocks.begin(), | 
 |                    all_parameter_blocks.end(), | 
 |                    included_parameter_blocks.begin(), | 
 |                    included_parameter_blocks.end(), | 
 |                    back_inserter(excluded_parameter_blocks)); | 
 |  | 
 |     variable_parameter_blocks.reserve(excluded_parameter_blocks.size()); | 
 |     for (int i = 0; i < excluded_parameter_blocks.size(); ++i) { | 
 |       ParameterBlock* parameter_block = excluded_parameter_blocks[i]; | 
 |       if (!parameter_block->IsConstant()) { | 
 |         variable_parameter_blocks.push_back(parameter_block); | 
 |         parameter_block->SetConstant(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Setup the Parameter indices and offsets before an evaluator can | 
 |   // be constructed and used. | 
 |   program.SetParameterOffsetsAndIndex(); | 
 |  | 
 |   Evaluator::Options evaluator_options; | 
 |  | 
 |   // Even though using SPARSE_NORMAL_CHOLESKY requires SuiteSparse or | 
 |   // CXSparse, here it just being used for telling the evaluator to | 
 |   // use a SparseRowCompressedMatrix for the jacobian. This is because | 
 |   // the Evaluator decides the storage for the Jacobian based on the | 
 |   // type of linear solver being used. | 
 |   evaluator_options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
 |   evaluator_options.num_threads = evaluate_options.num_threads; | 
 |  | 
 |   string error; | 
 |   scoped_ptr<Evaluator> evaluator( | 
 |       Evaluator::Create(evaluator_options, &program, &error)); | 
 |   if (evaluator.get() == NULL) { | 
 |     LOG(ERROR) << "Unable to create an Evaluator object. " | 
 |                << "Error: " << error | 
 |                << "This is a Ceres bug; please contact the developers!"; | 
 |  | 
 |     // Make the parameter blocks that were temporarily marked | 
 |     // constant, variable again. | 
 |     for (int i = 0; i < variable_parameter_blocks.size(); ++i) { | 
 |       variable_parameter_blocks[i]->SetVarying(); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (residuals !=NULL) { | 
 |     residuals->resize(evaluator->NumResiduals()); | 
 |   } | 
 |  | 
 |   if (gradient != NULL) { | 
 |     gradient->resize(evaluator->NumEffectiveParameters()); | 
 |   } | 
 |  | 
 |   scoped_ptr<CompressedRowSparseMatrix> tmp_jacobian; | 
 |   if (jacobian != NULL) { | 
 |     tmp_jacobian.reset( | 
 |         down_cast<CompressedRowSparseMatrix*>(evaluator->CreateJacobian())); | 
 |   } | 
 |  | 
 |   // Point the state pointers to the user state pointers. This is | 
 |   // needed so that we can extract a parameter vector which is then | 
 |   // passed to Evaluator::Evaluate. | 
 |   program.SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |  | 
 |   // Copy the value of the parameter blocks into a vector, since the | 
 |   // Evaluate::Evaluate method needs its input as such. The previous | 
 |   // call to SetParameterBlockStatePtrsToUserStatePtrs ensures that | 
 |   // these values are the ones corresponding to the actual state of | 
 |   // the parameter blocks, rather than the temporary state pointer | 
 |   // used for evaluation. | 
 |   Vector parameters(program.NumParameters()); | 
 |   program.ParameterBlocksToStateVector(parameters.data()); | 
 |  | 
 |   double tmp_cost = 0; | 
 |  | 
 |   Evaluator::EvaluateOptions evaluator_evaluate_options; | 
 |   evaluator_evaluate_options.apply_loss_function = | 
 |       evaluate_options.apply_loss_function; | 
 |   bool status = evaluator->Evaluate(evaluator_evaluate_options, | 
 |                                     parameters.data(), | 
 |                                     &tmp_cost, | 
 |                                     residuals != NULL ? &(*residuals)[0] : NULL, | 
 |                                     gradient != NULL ? &(*gradient)[0] : NULL, | 
 |                                     tmp_jacobian.get()); | 
 |  | 
 |   // Make the parameter blocks that were temporarily marked constant, | 
 |   // variable again. | 
 |   for (int i = 0; i < variable_parameter_blocks.size(); ++i) { | 
 |     variable_parameter_blocks[i]->SetVarying(); | 
 |   } | 
 |  | 
 |   if (status) { | 
 |     if (cost != NULL) { | 
 |       *cost = tmp_cost; | 
 |     } | 
 |     if (jacobian != NULL) { | 
 |       tmp_jacobian->ToCRSMatrix(jacobian); | 
 |     } | 
 |   } | 
 |  | 
 |   return status; | 
 | } | 
 |  | 
 | int ProblemImpl::NumParameterBlocks() const { | 
 |   return program_->NumParameterBlocks(); | 
 | } | 
 |  | 
 | int ProblemImpl::NumParameters() const { | 
 |   return program_->NumParameters(); | 
 | } | 
 |  | 
 | int ProblemImpl::NumResidualBlocks() const { | 
 |   return program_->NumResidualBlocks(); | 
 | } | 
 |  | 
 | int ProblemImpl::NumResiduals() const { | 
 |   return program_->NumResiduals(); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |