|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // Create CostFunctions as needed by the least squares framework with jacobians | 
|  | // computed via numeric (a.k.a. finite) differentiation. For more details see | 
|  | // http://en.wikipedia.org/wiki/Numerical_differentiation. | 
|  | // | 
|  | // To get a numerically differentiated cost function, define a subclass of | 
|  | // CostFunction such that the Evaluate() function ignores the jacobian | 
|  | // parameter. The numeric differentiation wrapper will fill in the jacobian | 
|  | // parameter if nececssary by repeatedly calling the Evaluate() function with | 
|  | // small changes to the appropriate parameters, and computing the slope. For | 
|  | // performance, the numeric differentiation wrapper class is templated on the | 
|  | // concrete cost function, even though it could be implemented only in terms of | 
|  | // the virtual CostFunction interface. | 
|  | // | 
|  | // The numerically differentiated version of a cost function for a cost function | 
|  | // can be constructed as follows: | 
|  | // | 
|  | //   CostFunction* cost_function | 
|  | //       = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>( | 
|  | //           new MyCostFunction(...), TAKE_OWNERSHIP); | 
|  | // | 
|  | // where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 | 
|  | // respectively. Look at the tests for a more detailed example. | 
|  | // | 
|  | // The central difference method is considerably more accurate at the cost of | 
|  | // twice as many function evaluations than forward difference. Consider using | 
|  | // central differences begin with, and only after that works, trying forward | 
|  | // difference to improve performance. | 
|  | // | 
|  | // TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ | 
|  | #define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ | 
|  |  | 
|  | #include <cstring> | 
|  | #include <glog/logging.h> | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | enum NumericDiffMethod { | 
|  | CENTRAL, | 
|  | FORWARD | 
|  | }; | 
|  |  | 
|  | // This is split from the main class because C++ doesn't allow partial template | 
|  | // specializations for member functions. The alternative is to repeat the main | 
|  | // class for differing numbers of parameters, which is also unfortunate. | 
|  | template <typename CostFunctionNoJacobian, | 
|  | int num_residuals, | 
|  | int parameter_block_size, | 
|  | int parameter_block, | 
|  | NumericDiffMethod method> | 
|  | struct Differencer { | 
|  | // Mutates parameters but must restore them before return. | 
|  | static bool EvaluateJacobianForParameterBlock( | 
|  | const CostFunctionNoJacobian *function, | 
|  | double const* residuals_at_eval_point, | 
|  | double **parameters, | 
|  | double **jacobians) { | 
|  | using Eigen::Map; | 
|  | using Eigen::Matrix; | 
|  | using Eigen::RowMajor; | 
|  |  | 
|  | typedef Matrix<double, num_residuals, 1> ResidualVector; | 
|  | typedef Matrix<double, parameter_block_size, 1> ParameterVector; | 
|  | typedef Matrix<double, num_residuals, parameter_block_size, RowMajor> | 
|  | JacobianMatrix; | 
|  |  | 
|  | Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], | 
|  | num_residuals, | 
|  | parameter_block_size); | 
|  |  | 
|  | // Mutate 1 element at a time and then restore. | 
|  | Map<ParameterVector> x_plus_delta(parameters[parameter_block], | 
|  | parameter_block_size); | 
|  | ParameterVector x(x_plus_delta); | 
|  |  | 
|  | // TODO(keir): Pick a smarter number! In theory a good choice is sqrt(eps) * | 
|  | // x, which for doubles means about 1e-8 * x. However, I have found this | 
|  | // number too optimistic. This number should be exposed for users to change. | 
|  | const double kRelativeStepSize = 1e-6; | 
|  |  | 
|  | ParameterVector step_size = x.array().abs() * kRelativeStepSize; | 
|  |  | 
|  | // To handle cases where a parameter is exactly zero, instead use the mean | 
|  | // step_size for the other dimensions. | 
|  | double fallback_step_size = step_size.sum() / step_size.rows(); | 
|  | if (fallback_step_size == 0.0) { | 
|  | // If all the parameters are zero, there's no good answer. Take | 
|  | // kRelativeStepSize as a guess and hope for the best. | 
|  | fallback_step_size = kRelativeStepSize; | 
|  | } | 
|  |  | 
|  | // For each parameter in the parameter block, use finite differences to | 
|  | // compute the derivative for that parameter. | 
|  | for (int j = 0; j < parameter_block_size; ++j) { | 
|  | if (step_size(j) == 0.0) { | 
|  | // The parameter is exactly zero, so compromise and use the mean | 
|  | // step_size from the other parameters. This can break in many cases, | 
|  | // but it's hard to pick a good number without problem specific | 
|  | // knowledge. | 
|  | step_size(j) = fallback_step_size; | 
|  | } | 
|  | x_plus_delta(j) = x(j) + step_size(j); | 
|  |  | 
|  | double residuals[num_residuals];  // NOLINT | 
|  | if (!function->Evaluate(parameters, residuals, NULL)) { | 
|  | // Something went wrong; bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Compute this column of the jacobian in 3 steps: | 
|  | // 1. Store residuals for the forward part. | 
|  | // 2. Subtract residuals for the backward (or 0) part. | 
|  | // 3. Divide out the run. | 
|  | parameter_jacobian.col(j) = | 
|  | Map<const ResidualVector>(residuals, num_residuals); | 
|  |  | 
|  | double one_over_h = 1 / step_size(j); | 
|  | if (method == CENTRAL) { | 
|  | // Compute the function on the other side of x(j). | 
|  | x_plus_delta(j) = x(j) - step_size(j); | 
|  |  | 
|  | if (!function->Evaluate(parameters, residuals, NULL)) { | 
|  | // Something went wrong; bail. | 
|  | return false; | 
|  | } | 
|  | parameter_jacobian.col(j) -= | 
|  | Map<ResidualVector>(residuals, num_residuals, 1); | 
|  | one_over_h /= 2; | 
|  | } else { | 
|  | // Forward difference only; reuse existing residuals evaluation. | 
|  | parameter_jacobian.col(j) -= | 
|  | Map<const ResidualVector>(residuals_at_eval_point, num_residuals); | 
|  | } | 
|  | x_plus_delta(j) = x(j);  // Restore x_plus_delta. | 
|  |  | 
|  | // Divide out the run to get slope. | 
|  | parameter_jacobian.col(j) *= one_over_h; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Prevent invalid instantiations. | 
|  | template <typename CostFunctionNoJacobian, | 
|  | int num_residuals, | 
|  | int parameter_block, | 
|  | NumericDiffMethod method> | 
|  | struct Differencer<CostFunctionNoJacobian, | 
|  | num_residuals, | 
|  | 0 /* parameter_block_size */, | 
|  | parameter_block, | 
|  | method> { | 
|  | static bool EvaluateJacobianForParameterBlock( | 
|  | const CostFunctionNoJacobian *function, | 
|  | double const* residuals_at_eval_point, | 
|  | double **parameters, | 
|  | double **jacobians) { | 
|  | LOG(FATAL) << "Shouldn't get here."; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename CostFunctionNoJacobian, | 
|  | NumericDiffMethod method = CENTRAL, int M = 0, | 
|  | int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0> | 
|  | class NumericDiffCostFunction | 
|  | : public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> { | 
|  | public: | 
|  | NumericDiffCostFunction(CostFunctionNoJacobian* function, | 
|  | Ownership ownership) | 
|  | : function_(function), ownership_(ownership) {} | 
|  |  | 
|  | virtual ~NumericDiffCostFunction() { | 
|  | if (ownership_ != TAKE_OWNERSHIP) { | 
|  | function_.release(); | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | // Get the function value (residuals) at the the point to evaluate. | 
|  | bool success = function_->Evaluate(parameters, residuals, NULL); | 
|  | if (!success) { | 
|  | // Something went wrong; ignore the jacobian. | 
|  | return false; | 
|  | } | 
|  | if (!jacobians) { | 
|  | // Nothing to do; just forward. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Create a copy of the parameters which will get mutated. | 
|  | const int kParametersSize = N0 + N1 + N2 + N3 + N4 + N5; | 
|  | double parameters_copy[kParametersSize]; | 
|  | double *parameters_references_copy[6]; | 
|  | parameters_references_copy[0] = ¶meters_copy[0]; | 
|  | parameters_references_copy[1] = ¶meters_copy[0] + N0; | 
|  | parameters_references_copy[2] = ¶meters_copy[0] + N0 + N1; | 
|  | parameters_references_copy[3] = ¶meters_copy[0] + N0 + N1 + N2; | 
|  | parameters_references_copy[4] = ¶meters_copy[0] + N0 + N1 + N2 + N3; | 
|  | parameters_references_copy[5] = | 
|  | ¶meters_copy[0] + N0 + N1 + N2 + N3 + N4; | 
|  |  | 
|  | #define COPY_PARAMETER_BLOCK(block) \ | 
|  | if (N ## block) memcpy(parameters_references_copy[block], \ | 
|  | parameters[block], \ | 
|  | sizeof(double) * N ## block);  // NOLINT | 
|  | COPY_PARAMETER_BLOCK(0); | 
|  | COPY_PARAMETER_BLOCK(1); | 
|  | COPY_PARAMETER_BLOCK(2); | 
|  | COPY_PARAMETER_BLOCK(3); | 
|  | COPY_PARAMETER_BLOCK(4); | 
|  | COPY_PARAMETER_BLOCK(5); | 
|  | #undef COPY_PARAMETER_BLOCK | 
|  |  | 
|  | #define EVALUATE_JACOBIAN_FOR_BLOCK(block) \ | 
|  | if (N ## block && jacobians[block]) { \ | 
|  | if (!Differencer<CostFunctionNoJacobian, /* NOLINT */ \ | 
|  | M, \ | 
|  | N ## block, \ | 
|  | block, \ | 
|  | method>::EvaluateJacobianForParameterBlock( \ | 
|  | function_.get(), \ | 
|  | residuals, \ | 
|  | parameters_references_copy, \ | 
|  | jacobians)) { \ | 
|  | return false; \ | 
|  | } \ | 
|  | } | 
|  | EVALUATE_JACOBIAN_FOR_BLOCK(0); | 
|  | EVALUATE_JACOBIAN_FOR_BLOCK(1); | 
|  | EVALUATE_JACOBIAN_FOR_BLOCK(2); | 
|  | EVALUATE_JACOBIAN_FOR_BLOCK(3); | 
|  | EVALUATE_JACOBIAN_FOR_BLOCK(4); | 
|  | EVALUATE_JACOBIAN_FOR_BLOCK(5); | 
|  | #undef EVALUATE_JACOBIAN_FOR_BLOCK | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | internal::scoped_ptr<CostFunctionNoJacobian> function_; | 
|  | Ownership ownership_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |