| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wjr@google.com (William Rucklidge) |
| // |
| // Tests for the conditioned cost function. |
| |
| #include "ceres/conditioned_cost_function.h" |
| |
| #include "ceres/internal/eigen.h" |
| #include "ceres/normal_prior.h" |
| #include "ceres/types.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // The size of the cost functions we build. |
| static constexpr int kTestCostFunctionSize = 3; |
| |
| // A simple cost function: return ax + b. |
| class LinearCostFunction : public CostFunction { |
| public: |
| LinearCostFunction(double a, double b) : a_(a), b_(b) { |
| set_num_residuals(1); |
| mutable_parameter_block_sizes()->push_back(1); |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| *residuals = **parameters * a_ + b_; |
| if (jacobians && *jacobians) { |
| **jacobians = a_; |
| } |
| |
| return true; |
| } |
| |
| private: |
| const double a_, b_; |
| }; |
| |
| // Tests that ConditionedCostFunction does what it's supposed to. |
| TEST(ConditionedCostFunction, NormalOperation) { |
| double v1[kTestCostFunctionSize], v2[kTestCostFunctionSize], |
| jac[kTestCostFunctionSize * kTestCostFunctionSize], |
| result[kTestCostFunctionSize]; |
| |
| for (int i = 0; i < kTestCostFunctionSize; i++) { |
| v1[i] = i; |
| v2[i] = i * 10; |
| // Seed a few garbage values in the Jacobian matrix, to make sure that |
| // they're overwritten. |
| jac[i * 2] = i * i; |
| result[i] = i * i * i; |
| } |
| |
| // Make a cost function that computes x - v2 |
| VectorRef v2_vector(v2, kTestCostFunctionSize, 1); |
| Matrix identity(kTestCostFunctionSize, kTestCostFunctionSize); |
| identity.setIdentity(); |
| auto* difference_cost_function = new NormalPrior(identity, v2_vector); |
| |
| std::vector<CostFunction*> conditioners; |
| for (int i = 0; i < kTestCostFunctionSize; i++) { |
| conditioners.push_back(new LinearCostFunction(i + 2, i * 7)); |
| } |
| |
| ConditionedCostFunction conditioned_cost_function( |
| difference_cost_function, conditioners, TAKE_OWNERSHIP); |
| EXPECT_EQ(difference_cost_function->num_residuals(), |
| conditioned_cost_function.num_residuals()); |
| EXPECT_EQ(difference_cost_function->parameter_block_sizes(), |
| conditioned_cost_function.parameter_block_sizes()); |
| |
| double* parameters[1]; |
| parameters[0] = v1; |
| double* jacs[1]; |
| jacs[0] = jac; |
| |
| conditioned_cost_function.Evaluate(parameters, result, jacs); |
| for (int i = 0; i < kTestCostFunctionSize; i++) { |
| EXPECT_DOUBLE_EQ((i + 2) * (v1[i] - v2[i]) + i * 7, result[i]); |
| } |
| |
| for (int i = 0; i < kTestCostFunctionSize; i++) { |
| for (int j = 0; j < kTestCostFunctionSize; j++) { |
| double actual = jac[i * kTestCostFunctionSize + j]; |
| if (i != j) { |
| EXPECT_DOUBLE_EQ(0, actual); |
| } else { |
| EXPECT_DOUBLE_EQ(i + 2, actual); |
| } |
| } |
| } |
| } |
| |
| TEST(ConditionedCostFunction, SharedConditionersDoNotTriggerDoubleFree) { |
| // Make a cost function that computes x - v2 |
| double v2[kTestCostFunctionSize]; |
| VectorRef v2_vector(v2, kTestCostFunctionSize, 1); |
| Matrix identity = |
| Matrix::Identity(kTestCostFunctionSize, kTestCostFunctionSize); |
| auto* difference_cost_function = new NormalPrior(identity, v2_vector); |
| CostFunction* conditioner = new LinearCostFunction(2, 7); |
| std::vector<CostFunction*> conditioners; |
| for (int i = 0; i < kTestCostFunctionSize; i++) { |
| conditioners.push_back(conditioner); |
| } |
| |
| ConditionedCostFunction conditioned_cost_function( |
| difference_cost_function, conditioners, TAKE_OWNERSHIP); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |