| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| // |
| |
| #ifndef CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ |
| #define CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ |
| |
| #include "ceres/internal/config.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| #include <memory> |
| |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/cuda_block_structure.h" |
| #include "ceres/cuda_buffer.h" |
| #include "ceres/cuda_sparse_matrix.h" |
| #include "ceres/cuda_streamed_buffer.h" |
| |
| namespace ceres::internal { |
| // We use cuSPARSE library for SpMV operations. However, it does not support |
| // block-sparse format with varying size of the blocks. Thus, we perform the |
| // following operations in order to compute products of block-sparse matrices |
| // and dense vectors on gpu: |
| // - Once per block-sparse structure update: |
| // - Compute CRS structure from block-sparse structure and check if values of |
| // block-sparse matrix would have the same order as values of CRS matrix |
| // - Once per block-sparse values update: |
| // - Update values in CRS matrix with values of block-sparse matrix |
| // |
| // Only block-sparse matrices with sequential order of cells are supported. |
| // |
| // UpdateValues method updates values: |
| // - In a single host-to-device copy for matrices with CRS-compatible value |
| // layout |
| // - Simultaneously transferring and permuting values using CudaStreamedBuffer |
| // otherwise |
| class CERES_NO_EXPORT CudaBlockSparseCRSView { |
| public: |
| // Initializes internal CRS matrix using structure and values of block-sparse |
| // matrix For block-sparse matrices that have value layout different from CRS |
| // block-sparse structure will be stored/ |
| CudaBlockSparseCRSView(const BlockSparseMatrix& bsm, ContextImpl* context); |
| |
| const CudaSparseMatrix* crs_matrix() const { return crs_matrix_.get(); } |
| CudaSparseMatrix* mutable_crs_matrix() { return crs_matrix_.get(); } |
| |
| // Update values of crs_matrix_ using values of block-sparse matrix. |
| // Assumes that bsm has the same block-sparse structure as matrix that was |
| // used for construction. |
| void UpdateValues(const BlockSparseMatrix& bsm); |
| |
| // Returns true if block-sparse matrix had CRS-compatible value layout |
| bool IsCrsCompatible() const { return is_crs_compatible_; } |
| |
| void LeftMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const { |
| crs_matrix()->LeftMultiplyAndAccumulate(x, y); |
| } |
| |
| void RightMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const { |
| crs_matrix()->RightMultiplyAndAccumulate(x, y); |
| } |
| |
| private: |
| // Value permutation kernel performs a single element-wise operation per |
| // thread, thus performing permutation in blocks of 8 megabytes of |
| // block-sparse values seems reasonable |
| static constexpr int kMaxTemporaryArraySize = 1 * 1024 * 1024; |
| std::unique_ptr<CudaSparseMatrix> crs_matrix_; |
| // Only created if block-sparse matrix has non-CRS value layout |
| std::unique_ptr<CudaStreamedBuffer<double>> streamed_buffer_; |
| // Only stored if block-sparse matrix has non-CRS value layout |
| std::unique_ptr<CudaBlockSparseStructure> block_structure_; |
| bool is_crs_compatible_; |
| ContextImpl* context_; |
| }; |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |
| #endif // CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ |