| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #include "ceres/cuda_block_structure.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| namespace ceres::internal { |
| namespace { |
| // Dimension of a sorted array of blocks |
| inline int Dimension(const std::vector<Block>& blocks) { |
| if (blocks.empty()) { |
| return 0; |
| } |
| const auto& last = blocks.back(); |
| return last.size + last.position; |
| } |
| } // namespace |
| CudaBlockSparseStructure::CudaBlockSparseStructure( |
| const CompressedRowBlockStructure& block_structure, ContextImpl* context) |
| : CudaBlockSparseStructure(block_structure, 0, context) {} |
| |
| CudaBlockSparseStructure::CudaBlockSparseStructure( |
| const CompressedRowBlockStructure& block_structure, |
| const int num_col_blocks_e, |
| ContextImpl* context) |
| : first_cell_in_row_block_(context), |
| value_offset_row_block_f_(context), |
| cells_(context), |
| row_blocks_(context), |
| col_blocks_(context) { |
| // Row blocks extracted from CompressedRowBlockStructure::rows |
| std::vector<Block> row_blocks; |
| // Column blocks can be reused as-is |
| const auto& col_blocks = block_structure.cols; |
| |
| // Row block offset is an index of the first cell corresponding to row block |
| std::vector<int> first_cell_in_row_block; |
| // Offset of the first value in the first non-empty row-block of F sub-matrix |
| std::vector<int> value_offset_row_block_f; |
| // Flat array of all cells from all row-blocks |
| std::vector<Cell> cells; |
| |
| int f_values_offset = -1; |
| num_nonzeros_e_ = 0; |
| is_crs_compatible_ = true; |
| num_row_blocks_ = block_structure.rows.size(); |
| num_col_blocks_ = col_blocks.size(); |
| |
| row_blocks.reserve(num_row_blocks_); |
| first_cell_in_row_block.reserve(num_row_blocks_ + 1); |
| value_offset_row_block_f.reserve(num_row_blocks_ + 1); |
| num_nonzeros_ = 0; |
| // Block-sparse matrices arising from block-jacobian writer are expected to |
| // have sequential layout (for partitioned matrices - it is expected that both |
| // E and F sub-matrices have sequential layout). |
| bool sequential_layout = true; |
| int row_block_id = 0; |
| num_row_blocks_e_ = 0; |
| for (; row_block_id < num_row_blocks_; ++row_block_id) { |
| const auto& r = block_structure.rows[row_block_id]; |
| const int row_block_size = r.block.size; |
| const int num_cells = r.cells.size(); |
| |
| if (num_col_blocks_e == 0 || r.cells.size() == 0 || |
| r.cells[0].block_id >= num_col_blocks_e) { |
| break; |
| } |
| num_row_blocks_e_ = row_block_id + 1; |
| // In E sub-matrix there is exactly a single E cell in the row |
| // since E cells are stored separately from F cells, crs-compatiblity of |
| // F sub-matrix only breaks if there are more than 2 cells in row (that |
| // is, more than 1 cell in F sub-matrix) |
| if (num_cells > 2 && row_block_size > 1) { |
| is_crs_compatible_ = false; |
| } |
| row_blocks.emplace_back(r.block); |
| first_cell_in_row_block.push_back(cells.size()); |
| |
| for (int cell_id = 0; cell_id < num_cells; ++cell_id) { |
| const auto& c = r.cells[cell_id]; |
| const int col_block_size = col_blocks[c.block_id].size; |
| const int cell_size = col_block_size * row_block_size; |
| cells.push_back(c); |
| if (cell_id == 0) { |
| DCHECK(c.position == num_nonzeros_e_); |
| num_nonzeros_e_ += cell_size; |
| } else { |
| if (f_values_offset == -1) { |
| num_nonzeros_ = c.position; |
| f_values_offset = c.position; |
| } |
| sequential_layout &= c.position == num_nonzeros_; |
| num_nonzeros_ += cell_size; |
| if (cell_id == 1) { |
| // Correct value_offset_row_block_f for empty row-blocks of F |
| // preceding this one |
| for (auto it = value_offset_row_block_f.rbegin(); |
| it != value_offset_row_block_f.rend(); |
| ++it) { |
| if (*it != -1) break; |
| *it = c.position; |
| } |
| value_offset_row_block_f.push_back(c.position); |
| } |
| } |
| } |
| if (num_cells == 1) { |
| value_offset_row_block_f.push_back(-1); |
| } |
| } |
| for (; row_block_id < num_row_blocks_; ++row_block_id) { |
| const auto& r = block_structure.rows[row_block_id]; |
| const int row_block_size = r.block.size; |
| const int num_cells = r.cells.size(); |
| // After num_row_blocks_e_ row-blocks, there should be no cells in E |
| // sub-matrix. Thus crs-compatibility of F sub-matrix breaks if there are |
| // more than one cells in the row-block |
| if (num_cells > 1 && row_block_size > 1) { |
| is_crs_compatible_ = false; |
| } |
| row_blocks.emplace_back(r.block); |
| first_cell_in_row_block.push_back(cells.size()); |
| |
| if (r.cells.empty()) { |
| value_offset_row_block_f.push_back(-1); |
| } else { |
| for (auto it = value_offset_row_block_f.rbegin(); |
| it != value_offset_row_block_f.rend(); |
| --it) { |
| if (*it != -1) break; |
| *it = cells[0].position; |
| } |
| value_offset_row_block_f.push_back(r.cells[0].position); |
| } |
| for (const auto& c : r.cells) { |
| const int col_block_size = col_blocks[c.block_id].size; |
| const int cell_size = col_block_size * row_block_size; |
| cells.push_back(c); |
| DCHECK(c.block_id >= num_col_blocks_e); |
| if (f_values_offset == -1) { |
| num_nonzeros_ = c.position; |
| f_values_offset = c.position; |
| } |
| sequential_layout &= c.position == num_nonzeros_; |
| num_nonzeros_ += cell_size; |
| } |
| } |
| |
| if (f_values_offset == -1) { |
| f_values_offset = num_nonzeros_e_; |
| num_nonzeros_ = num_nonzeros_e_; |
| } |
| // Fill non-zero offsets for the last rows of F submatrix |
| for (auto it = value_offset_row_block_f.rbegin(); |
| it != value_offset_row_block_f.rend(); |
| ++it) { |
| if (*it != -1) break; |
| *it = num_nonzeros_; |
| } |
| value_offset_row_block_f.push_back(num_nonzeros_); |
| CHECK_EQ(num_nonzeros_e_, f_values_offset); |
| first_cell_in_row_block.push_back(cells.size()); |
| num_cells_ = cells.size(); |
| |
| num_rows_ = Dimension(row_blocks); |
| num_cols_ = Dimension(col_blocks); |
| |
| CHECK(sequential_layout); |
| |
| if (VLOG_IS_ON(3)) { |
| const size_t first_cell_in_row_block_size = |
| first_cell_in_row_block.size() * sizeof(int); |
| const size_t cells_size = cells.size() * sizeof(Cell); |
| const size_t row_blocks_size = row_blocks.size() * sizeof(Block); |
| const size_t col_blocks_size = col_blocks.size() * sizeof(Block); |
| const size_t total_size = first_cell_in_row_block_size + cells_size + |
| col_blocks_size + row_blocks_size; |
| const double ratio = |
| (100. * total_size) / (num_nonzeros_ * (sizeof(int) + sizeof(double)) + |
| num_rows_ * sizeof(int)); |
| VLOG(3) << "\nCudaBlockSparseStructure:\n" |
| "\tRow block offsets: " |
| << first_cell_in_row_block_size |
| << " bytes\n" |
| "\tColumn blocks: " |
| << col_blocks_size |
| << " bytes\n" |
| "\tRow blocks: " |
| << row_blocks_size |
| << " bytes\n" |
| "\tCells: " |
| << cells_size << " bytes\n\tTotal: " << total_size |
| << " bytes of GPU memory (" << ratio << "% of CRS matrix size)"; |
| } |
| |
| first_cell_in_row_block_.CopyFromCpuVector(first_cell_in_row_block); |
| cells_.CopyFromCpuVector(cells); |
| row_blocks_.CopyFromCpuVector(row_blocks); |
| col_blocks_.CopyFromCpuVector(col_blocks); |
| if (num_col_blocks_e || num_row_blocks_e_) { |
| value_offset_row_block_f_.CopyFromCpuVector(value_offset_row_block_f); |
| } |
| } |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |