| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: markshachkov@gmail.com (Mark Shachkov) |
| |
| #include "ceres/power_series_expansion_preconditioner.h" |
| |
| #include "ceres/eigen_vector_ops.h" |
| #include "ceres/parallel_vector_ops.h" |
| |
| namespace ceres::internal { |
| |
| PowerSeriesExpansionPreconditioner::PowerSeriesExpansionPreconditioner( |
| const ImplicitSchurComplement* isc, |
| const int max_num_spse_iterations, |
| const double spse_tolerance, |
| const Preconditioner::Options& options) |
| : isc_(isc), |
| max_num_spse_iterations_(max_num_spse_iterations), |
| spse_tolerance_(spse_tolerance), |
| options_(options) {} |
| |
| PowerSeriesExpansionPreconditioner::~PowerSeriesExpansionPreconditioner() = |
| default; |
| |
| bool PowerSeriesExpansionPreconditioner::Update(const LinearOperator& /*A*/, |
| const double* /*D*/) { |
| return true; |
| } |
| |
| void PowerSeriesExpansionPreconditioner::RightMultiplyAndAccumulate( |
| const double* x, double* y) const { |
| VectorRef yref(y, num_rows()); |
| Vector series_term(num_rows()); |
| Vector previous_series_term(num_rows()); |
| ParallelSetZero(options_.context, options_.num_threads, yref); |
| isc_->block_diagonal_FtF_inverse()->RightMultiplyAndAccumulate( |
| x, y, options_.context, options_.num_threads); |
| ParallelAssign( |
| options_.context, options_.num_threads, previous_series_term, yref); |
| |
| const double norm_threshold = |
| spse_tolerance_ * Norm(yref, options_.context, options_.num_threads); |
| |
| for (int i = 1;; i++) { |
| ParallelSetZero(options_.context, options_.num_threads, series_term); |
| isc_->InversePowerSeriesOperatorRightMultiplyAccumulate( |
| previous_series_term.data(), series_term.data()); |
| ParallelAssign( |
| options_.context, options_.num_threads, yref, yref + series_term); |
| if (i >= max_num_spse_iterations_ || series_term.norm() < norm_threshold) { |
| break; |
| } |
| std::swap(previous_series_term, series_term); |
| } |
| } |
| |
| int PowerSeriesExpansionPreconditioner::num_rows() const { |
| return isc_->num_rows(); |
| } |
| |
| } // namespace ceres::internal |