|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | //         mierle@gmail.com (Keir Mierle) | 
|  |  | 
|  | #include <cstddef> | 
|  |  | 
|  | #include <memory> | 
|  | #include "ceres/dynamic_numeric_diff_cost_function.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | const double kTolerance = 1e-6; | 
|  |  | 
|  | // Takes 2 parameter blocks: | 
|  | //     parameters[0] is size 10. | 
|  | //     parameters[1] is size 5. | 
|  | // Emits 21 residuals: | 
|  | //     A: i - parameters[0][i], for i in [0,10)  -- this is 10 residuals | 
|  | //     B: parameters[0][i] - i, for i in [0,10)  -- this is another 10. | 
|  | //     C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) | 
|  | class MyCostFunctor { | 
|  | public: | 
|  | bool operator()(double const* const* parameters, double* residuals) const { | 
|  | const double* params0 = parameters[0]; | 
|  | int r = 0; | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | residuals[r++] = i - params0[i]; | 
|  | residuals[r++] = params0[i] - i; | 
|  | } | 
|  |  | 
|  | double c_residual = 0.0; | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | c_residual += pow(params0[i], 2) - 8.0 * params0[i]; | 
|  | } | 
|  |  | 
|  | const double* params1 = parameters[1]; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | c_residual += params1[i]; | 
|  | } | 
|  | residuals[r++] = c_residual; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(DynamicNumericdiffCostFunctionTest, TestResiduals) { | 
|  | vector<double> param_block_0(10, 0.0); | 
|  | vector<double> param_block_1(5, 0.0); | 
|  | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Test residual computation. | 
|  | vector<double> residuals(21, -100000); | 
|  | vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  | EXPECT_TRUE(cost_function.Evaluate(¶meter_blocks[0], | 
|  | residuals.data(), | 
|  | NULL)); | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(0, residuals.at(20)); | 
|  | } | 
|  |  | 
|  |  | 
|  | TEST(DynamicNumericdiffCostFunctionTest, TestJacobian) { | 
|  | // Test the residual counting. | 
|  | vector<double> param_block_0(10, 0.0); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | param_block_0[i] = 2 * i; | 
|  | } | 
|  | vector<double> param_block_1(5, 0.0); | 
|  | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Prepare the residuals. | 
|  | vector<double> residuals(21, -100000); | 
|  |  | 
|  | // Prepare the parameters. | 
|  | vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  |  | 
|  | // Prepare the jacobian. | 
|  | vector<vector<double>> jacobian_vect(2); | 
|  | jacobian_vect[0].resize(21 * 10, -100000); | 
|  | jacobian_vect[1].resize(21 * 5, -100000); | 
|  | vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect[0].data()); | 
|  | jacobian.push_back(jacobian_vect[1].data()); | 
|  |  | 
|  | // Test jacobian computation. | 
|  | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), | 
|  | residuals.data(), | 
|  | jacobian.data())); | 
|  |  | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(420, residuals.at(20)); | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | // Check "A" Jacobian. | 
|  | EXPECT_NEAR(-1.0, jacobian_vect[0][2*p * 10 + p], kTolerance); | 
|  | // Check "B" Jacobian. | 
|  | EXPECT_NEAR(+1.0, jacobian_vect[0][(2*p+1) * 10 + p], kTolerance); | 
|  | jacobian_vect[0][2*p * 10 + p] = 0.0; | 
|  | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; | 
|  | } | 
|  |  | 
|  | // Check "C" Jacobian for first parameter block. | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | EXPECT_NEAR(4 * p - 8, jacobian_vect[0][20 * 10 + p], kTolerance); | 
|  | jacobian_vect[0][20 * 10 + p] = 0.0; | 
|  | } | 
|  | for (int i = 0; i < jacobian_vect[0].size(); ++i) { | 
|  | EXPECT_NEAR(0.0, jacobian_vect[0][i], kTolerance); | 
|  | } | 
|  |  | 
|  | // Check "C" Jacobian for second parameter block. | 
|  | for (int p = 0; p < 5; ++p) { | 
|  | EXPECT_NEAR(1.0, jacobian_vect[1][20 * 5 + p], kTolerance); | 
|  | jacobian_vect[1][20 * 5 + p] = 0.0; | 
|  | } | 
|  | for (int i = 0; i < jacobian_vect[1].size(); ++i) { | 
|  | EXPECT_NEAR(0.0, jacobian_vect[1][i], kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(DynamicNumericdiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) {  // NOLINT | 
|  | // Test the residual counting. | 
|  | vector<double> param_block_0(10, 0.0); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | param_block_0[i] = 2 * i; | 
|  | } | 
|  | vector<double> param_block_1(5, 0.0); | 
|  | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Prepare the residuals. | 
|  | vector<double> residuals(21, -100000); | 
|  |  | 
|  | // Prepare the parameters. | 
|  | vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  |  | 
|  | // Prepare the jacobian. | 
|  | vector<vector<double>> jacobian_vect(2); | 
|  | jacobian_vect[0].resize(21 * 10, -100000); | 
|  | jacobian_vect[1].resize(21 * 5, -100000); | 
|  | vector<double*> jacobian; | 
|  | jacobian.push_back(NULL); | 
|  | jacobian.push_back(jacobian_vect[1].data()); | 
|  |  | 
|  | // Test jacobian computation. | 
|  | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), | 
|  | residuals.data(), | 
|  | jacobian.data())); | 
|  |  | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(420, residuals.at(20)); | 
|  |  | 
|  | // Check "C" Jacobian for second parameter block. | 
|  | for (int p = 0; p < 5; ++p) { | 
|  | EXPECT_NEAR(1.0, jacobian_vect[1][20 * 5 + p], kTolerance); | 
|  | jacobian_vect[1][20 * 5 + p] = 0.0; | 
|  | } | 
|  | for (int i = 0; i < jacobian_vect[1].size(); ++i) { | 
|  | EXPECT_EQ(0.0, jacobian_vect[1][i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(DynamicNumericdiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) {  // NOLINT | 
|  | // Test the residual counting. | 
|  | vector<double> param_block_0(10, 0.0); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | param_block_0[i] = 2 * i; | 
|  | } | 
|  | vector<double> param_block_1(5, 0.0); | 
|  | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Prepare the residuals. | 
|  | vector<double> residuals(21, -100000); | 
|  |  | 
|  | // Prepare the parameters. | 
|  | vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  |  | 
|  | // Prepare the jacobian. | 
|  | vector<vector<double>> jacobian_vect(2); | 
|  | jacobian_vect[0].resize(21 * 10, -100000); | 
|  | jacobian_vect[1].resize(21 * 5, -100000); | 
|  | vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect[0].data()); | 
|  | jacobian.push_back(NULL); | 
|  |  | 
|  | // Test jacobian computation. | 
|  | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), | 
|  | residuals.data(), | 
|  | jacobian.data())); | 
|  |  | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(420, residuals.at(20)); | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | // Check "A" Jacobian. | 
|  | EXPECT_NEAR(-1.0, jacobian_vect[0][2*p * 10 + p], kTolerance); | 
|  | // Check "B" Jacobian. | 
|  | EXPECT_NEAR(+1.0, jacobian_vect[0][(2*p+1) * 10 + p], kTolerance); | 
|  | jacobian_vect[0][2*p * 10 + p] = 0.0; | 
|  | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; | 
|  | } | 
|  |  | 
|  | // Check "C" Jacobian for first parameter block. | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | EXPECT_NEAR(4 * p - 8, jacobian_vect[0][20 * 10 + p], kTolerance); | 
|  | jacobian_vect[0][20 * 10 + p] = 0.0; | 
|  | } | 
|  | for (int i = 0; i < jacobian_vect[0].size(); ++i) { | 
|  | EXPECT_EQ(0.0, jacobian_vect[0][i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Takes 3 parameter blocks: | 
|  | //     parameters[0] (x) is size 1. | 
|  | //     parameters[1] (y) is size 2. | 
|  | //     parameters[2] (z) is size 3. | 
|  | // Emits 7 residuals: | 
|  | //     A: x[0] (= sum_x) | 
|  | //     B: y[0] + 2.0 * y[1] (= sum_y) | 
|  | //     C: z[0] + 3.0 * z[1] + 6.0 * z[2] (= sum_z) | 
|  | //     D: sum_x * sum_y | 
|  | //     E: sum_y * sum_z | 
|  | //     F: sum_x * sum_z | 
|  | //     G: sum_x * sum_y * sum_z | 
|  | class MyThreeParameterCostFunctor { | 
|  | public: | 
|  | template <typename T> | 
|  | bool operator()(T const* const* parameters, T* residuals) const { | 
|  | const T* x = parameters[0]; | 
|  | const T* y = parameters[1]; | 
|  | const T* z = parameters[2]; | 
|  |  | 
|  | T sum_x = x[0]; | 
|  | T sum_y = y[0] + 2.0 * y[1]; | 
|  | T sum_z = z[0] + 3.0 * z[1] + 6.0 * z[2]; | 
|  |  | 
|  | residuals[0] = sum_x; | 
|  | residuals[1] = sum_y; | 
|  | residuals[2] = sum_z; | 
|  | residuals[3] = sum_x * sum_y; | 
|  | residuals[4] = sum_y * sum_z; | 
|  | residuals[5] = sum_x * sum_z; | 
|  | residuals[6] = sum_x * sum_y * sum_z; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ThreeParameterCostFunctorTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | // Prepare the parameters. | 
|  | x_.resize(1); | 
|  | x_[0] = 0.0; | 
|  |  | 
|  | y_.resize(2); | 
|  | y_[0] = 1.0; | 
|  | y_[1] = 3.0; | 
|  |  | 
|  | z_.resize(3); | 
|  | z_[0] = 2.0; | 
|  | z_[1] = 4.0; | 
|  | z_[2] = 6.0; | 
|  |  | 
|  | parameter_blocks_.resize(3); | 
|  | parameter_blocks_[0] = &x_[0]; | 
|  | parameter_blocks_[1] = &y_[0]; | 
|  | parameter_blocks_[2] = &z_[0]; | 
|  |  | 
|  | // Prepare the cost function. | 
|  | typedef DynamicNumericDiffCostFunction<MyThreeParameterCostFunctor> | 
|  | DynamicMyThreeParameterCostFunction; | 
|  | DynamicMyThreeParameterCostFunction * cost_function = | 
|  | new DynamicMyThreeParameterCostFunction( | 
|  | new MyThreeParameterCostFunctor()); | 
|  | cost_function->AddParameterBlock(1); | 
|  | cost_function->AddParameterBlock(2); | 
|  | cost_function->AddParameterBlock(3); | 
|  | cost_function->SetNumResiduals(7); | 
|  |  | 
|  | cost_function_.reset(cost_function); | 
|  |  | 
|  | // Setup jacobian data. | 
|  | jacobian_vect_.resize(3); | 
|  | jacobian_vect_[0].resize(7 * x_.size(), -100000); | 
|  | jacobian_vect_[1].resize(7 * y_.size(), -100000); | 
|  | jacobian_vect_[2].resize(7 * z_.size(), -100000); | 
|  |  | 
|  | // Prepare the expected residuals. | 
|  | const double sum_x = x_[0]; | 
|  | const double sum_y = y_[0] + 2.0 * y_[1]; | 
|  | const double sum_z = z_[0] + 3.0 * z_[1] + 6.0 * z_[2]; | 
|  |  | 
|  | expected_residuals_.resize(7); | 
|  | expected_residuals_[0] = sum_x; | 
|  | expected_residuals_[1] = sum_y; | 
|  | expected_residuals_[2] = sum_z; | 
|  | expected_residuals_[3] = sum_x * sum_y; | 
|  | expected_residuals_[4] = sum_y * sum_z; | 
|  | expected_residuals_[5] = sum_x * sum_z; | 
|  | expected_residuals_[6] = sum_x * sum_y * sum_z; | 
|  |  | 
|  | // Prepare the expected jacobian entries. | 
|  | expected_jacobian_x_.resize(7); | 
|  | expected_jacobian_x_[0] = 1.0; | 
|  | expected_jacobian_x_[1] = 0.0; | 
|  | expected_jacobian_x_[2] = 0.0; | 
|  | expected_jacobian_x_[3] = sum_y; | 
|  | expected_jacobian_x_[4] = 0.0; | 
|  | expected_jacobian_x_[5] = sum_z; | 
|  | expected_jacobian_x_[6] = sum_y * sum_z; | 
|  |  | 
|  | expected_jacobian_y_.resize(14); | 
|  | expected_jacobian_y_[0] = 0.0; | 
|  | expected_jacobian_y_[1] = 0.0; | 
|  | expected_jacobian_y_[2] = 1.0; | 
|  | expected_jacobian_y_[3] = 2.0; | 
|  | expected_jacobian_y_[4] = 0.0; | 
|  | expected_jacobian_y_[5] = 0.0; | 
|  | expected_jacobian_y_[6] = sum_x; | 
|  | expected_jacobian_y_[7] = 2.0 * sum_x; | 
|  | expected_jacobian_y_[8] = sum_z; | 
|  | expected_jacobian_y_[9] = 2.0 * sum_z; | 
|  | expected_jacobian_y_[10] = 0.0; | 
|  | expected_jacobian_y_[11] = 0.0; | 
|  | expected_jacobian_y_[12] = sum_x * sum_z; | 
|  | expected_jacobian_y_[13] = 2.0 * sum_x * sum_z; | 
|  |  | 
|  | expected_jacobian_z_.resize(21); | 
|  | expected_jacobian_z_[0] = 0.0; | 
|  | expected_jacobian_z_[1] = 0.0; | 
|  | expected_jacobian_z_[2] = 0.0; | 
|  | expected_jacobian_z_[3] = 0.0; | 
|  | expected_jacobian_z_[4] = 0.0; | 
|  | expected_jacobian_z_[5] = 0.0; | 
|  | expected_jacobian_z_[6] = 1.0; | 
|  | expected_jacobian_z_[7] = 3.0; | 
|  | expected_jacobian_z_[8] = 6.0; | 
|  | expected_jacobian_z_[9] = 0.0; | 
|  | expected_jacobian_z_[10] = 0.0; | 
|  | expected_jacobian_z_[11] = 0.0; | 
|  | expected_jacobian_z_[12] = sum_y; | 
|  | expected_jacobian_z_[13] = 3.0 * sum_y; | 
|  | expected_jacobian_z_[14] = 6.0 * sum_y; | 
|  | expected_jacobian_z_[15] = sum_x; | 
|  | expected_jacobian_z_[16] = 3.0 * sum_x; | 
|  | expected_jacobian_z_[17] = 6.0 * sum_x; | 
|  | expected_jacobian_z_[18] = sum_x * sum_y; | 
|  | expected_jacobian_z_[19] = 3.0 * sum_x * sum_y; | 
|  | expected_jacobian_z_[20] = 6.0 * sum_x * sum_y; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | vector<double> x_; | 
|  | vector<double> y_; | 
|  | vector<double> z_; | 
|  |  | 
|  | vector<double*> parameter_blocks_; | 
|  |  | 
|  | std::unique_ptr<CostFunction> cost_function_; | 
|  |  | 
|  | vector<vector<double>> jacobian_vect_; | 
|  |  | 
|  | vector<double> expected_residuals_; | 
|  |  | 
|  | vector<double> expected_jacobian_x_; | 
|  | vector<double> expected_jacobian_y_; | 
|  | vector<double> expected_jacobian_z_; | 
|  | }; | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterResiduals) { | 
|  | vector<double> residuals(7, -100000); | 
|  | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), | 
|  | residuals.data(), | 
|  | NULL)); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterJacobian) { | 
|  | vector<double> residuals(7, -100000); | 
|  |  | 
|  | vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect_[0].data()); | 
|  | jacobian.push_back(jacobian_vect_[1].data()); | 
|  | jacobian.push_back(jacobian_vect_[2].data()); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), | 
|  | residuals.data(), | 
|  | jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_NEAR(expected_jacobian_x_[i], jacobian[0][i], kTolerance); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 14; ++i) { | 
|  | EXPECT_NEAR(expected_jacobian_y_[i], jacobian[1][i], kTolerance); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 21; ++i) { | 
|  | EXPECT_NEAR(expected_jacobian_z_[i], jacobian[2][i], kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, | 
|  | ThreeParameterJacobianWithFirstAndLastParameterBlockConstant) { | 
|  | vector<double> residuals(7, -100000); | 
|  |  | 
|  | vector<double*> jacobian; | 
|  | jacobian.push_back(NULL); | 
|  | jacobian.push_back(jacobian_vect_[1].data()); | 
|  | jacobian.push_back(NULL); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), | 
|  | residuals.data(), | 
|  | jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 14; ++i) { | 
|  | EXPECT_NEAR(expected_jacobian_y_[i], jacobian[1][i], kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, | 
|  | ThreeParameterJacobianWithSecondParameterBlockConstant) { | 
|  | vector<double> residuals(7, -100000); | 
|  |  | 
|  | vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect_[0].data()); | 
|  | jacobian.push_back(NULL); | 
|  | jacobian.push_back(jacobian_vect_[2].data()); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), | 
|  | residuals.data(), | 
|  | jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_NEAR(expected_jacobian_x_[i], jacobian[0][i], kTolerance); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 21; ++i) { | 
|  | EXPECT_NEAR(expected_jacobian_z_[i], jacobian[2][i], kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |