|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2014 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Bounds constrained test problems from the paper | 
|  | // | 
|  | // Testing Unconstrained Optimization Software | 
|  | // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom | 
|  | // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981 | 
|  | // | 
|  | // A subset of these problems were augmented with bounds and used for | 
|  | // testing bounds constrained optimization algorithms by | 
|  | // | 
|  | // A Trust Region Approach to Linearly Constrained Optimization | 
|  | // David M. Gay | 
|  | // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105 | 
|  | // Lecture Notes in Mathematics 1066, Springer Verlag, 1984. | 
|  | // | 
|  | // The latter paper is behind a paywall. We obtained the bounds on the | 
|  | // variables and the function values at the global minimums from | 
|  | // | 
|  | // http://www.mat.univie.ac.at/~neum/glopt/bounds.html | 
|  | // | 
|  | // A problem is considered solved if of the log relative error of its | 
|  | // objective function is at least 5. | 
|  |  | 
|  |  | 
|  | #include <cmath> | 
|  | #include <iostream>  // NOLINT | 
|  | #include "ceres/ceres.h" | 
|  | #include "gflags/gflags.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace examples { | 
|  |  | 
|  | const double kDoubleMax = std::numeric_limits<double>::max(); | 
|  |  | 
|  | #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals)          \ | 
|  | struct name {                                                         \ | 
|  | static const int kNumParameters = num_parameters;                   \ | 
|  | static const double initial_x[kNumParameters];                      \ | 
|  | static const double lower_bounds[kNumParameters];                   \ | 
|  | static const double upper_bounds[kNumParameters];                   \ | 
|  | static const double constrained_optimal_cost;                       \ | 
|  | static const double unconstrained_optimal_cost;                     \ | 
|  | static CostFunction* Create() {                                     \ | 
|  | return new AutoDiffCostFunction<name,                             \ | 
|  | num_residuals,                    \ | 
|  | num_parameters>(new name);        \ | 
|  | }                                                                   \ | 
|  | template <typename T>                                               \ | 
|  | bool operator()(const T* const x, T* residual) const { | 
|  |  | 
|  | #define END_MGH_PROBLEM return true; } };  // NOLINT | 
|  |  | 
|  | // Rosenbrock function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem1, 2, 2) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = T(10.0) * (x2 - x1 * x1); | 
|  | residual[1] = T(1.0) - x1; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem1::initial_x[] = {-1.2, 1.0}; | 
|  | const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem1::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem1::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Freudenstein and Roth function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem2, 2, 2) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = T(-13.0) + x1 + ((T(5.0) - x2) * x2 - T(2.0)) * x2; | 
|  | residual[1] = T(-29.0) + x1 + ((x2 + T(1.0)) * x2 - T(14.0)) * x2; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem2::initial_x[] = {0.5, -2.0}; | 
|  | const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem2::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem2::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Powell badly scaled function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem3, 2, 2) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = T(10000.0) * x1 * x2 - T(1.0); | 
|  | residual[1] = exp(-x1) + exp(-x2) - T(1.0001); | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem3::initial_x[] = {0.0, 1.0}; | 
|  | const double TestProblem3::lower_bounds[] = {0.0, 1.0}; | 
|  | const double TestProblem3::upper_bounds[] = {1.0, 9.0}; | 
|  | const double TestProblem3::constrained_optimal_cost = 0.15125900e-9; | 
|  | const double TestProblem3::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Brown badly scaled function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem4, 2, 3) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = x1  - T(1000000.0); | 
|  | residual[1] = x2 - T(0.000002); | 
|  | residual[2] = x1 * x2 - T(2.0); | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem4::initial_x[] = {1.0, 1.0}; | 
|  | const double TestProblem4::lower_bounds[] = {0.0, 0.00003}; | 
|  | const double TestProblem4::upper_bounds[] = {1000000.0, 100.0}; | 
|  | const double TestProblem4::constrained_optimal_cost = 0.78400000e3; | 
|  | const double TestProblem4::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Beale function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem5, 2, 3) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | residual[0] = T(1.5) - x1 * (T(1.0) - x2); | 
|  | residual[1] = T(2.25) - x1 * (T(1.0) - x2 * x2); | 
|  | residual[2] = T(2.625) - x1 * (T(1.0) - x2 * x2 * x2); | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem5::initial_x[] = {1.0, 1.0}; | 
|  | const double TestProblem5::lower_bounds[] = {0.6, 0.5}; | 
|  | const double TestProblem5::upper_bounds[] = {10.0, 100.0}; | 
|  | const double TestProblem5::constrained_optimal_cost = 0.0; | 
|  | const double TestProblem5::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Jennrich and Sampson function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem6, 2, 10) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | for (int i = 1; i <= 10; ++i) { | 
|  | residual[i - 1] = T(2.0) + T(2.0 * i) - | 
|  | exp(T(static_cast<double>(i)) * x1) - | 
|  | exp(T(static_cast<double>(i) * x2)); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem6::initial_x[] = {1.0, 1.0}; | 
|  | const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem6::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem6::unconstrained_optimal_cost = 124.362; | 
|  |  | 
|  | // Helical valley function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem7, 3, 3) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  | const T theta = T(0.5 / M_PI)  * atan(x2 / x1) + (x1 > 0.0 ? T(0.0) : T(0.5)); | 
|  |  | 
|  | residual[0] = T(10.0) * (x3 - T(10.0) * theta); | 
|  | residual[1] = T(10.0) * (sqrt(x1 * x1 + x2 * x2) - T(1.0)); | 
|  | residual[2] = x3; | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0}; | 
|  | const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0}; | 
|  | const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0}; | 
|  | const double TestProblem7::constrained_optimal_cost = 0.99042212; | 
|  | const double TestProblem7::unconstrained_optimal_cost = 0.0; | 
|  |  | 
|  | // Bard function | 
|  | BEGIN_MGH_PROBLEM(TestProblem8, 3, 15) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  |  | 
|  | double y[] = {0.14, 0.18, 0.22, 0.25, | 
|  | 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, | 
|  | 0.73, 0.96, 1.34, 2.10, 4.39}; | 
|  |  | 
|  | for (int i = 1; i <=15; ++i) { | 
|  | const T u = T(static_cast<double>(i)); | 
|  | const T v = T(static_cast<double>(16 - i)); | 
|  | const T w = T(static_cast<double>(std::min(i, 16 - i))); | 
|  | residual[i - 1] = T(y[i - 1]) - x1 + u / (v * x2 + w * x3); | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0}; | 
|  | const double TestProblem8::lower_bounds[] = { | 
|  | -kDoubleMax, -kDoubleMax, -kDoubleMax}; | 
|  | const double TestProblem8::upper_bounds[] = { | 
|  | kDoubleMax, kDoubleMax, kDoubleMax}; | 
|  | const double TestProblem8::constrained_optimal_cost = | 
|  | std::numeric_limits<double>::quiet_NaN(); | 
|  | const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3; | 
|  |  | 
|  | // Gaussian function. | 
|  | BEGIN_MGH_PROBLEM(TestProblem9, 3, 15) | 
|  | const T x1 = x[0]; | 
|  | const T x2 = x[1]; | 
|  | const T x3 = x[2]; | 
|  |  | 
|  | double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, | 
|  | 0.3989, | 
|  | 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009}; | 
|  | for (int i = 0; i < 15; ++i) { | 
|  | const T t_i = T((8.0 - i - 1.0) / 2.0); | 
|  | const T y_i = T(y[i]); | 
|  | residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / T(2.0)) - y_i; | 
|  | } | 
|  | END_MGH_PROBLEM; | 
|  |  | 
|  | const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0}; | 
|  | const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5}; | 
|  | const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1}; | 
|  | const double TestProblem9::constrained_optimal_cost = 0.11279300e-7; | 
|  | const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7; | 
|  |  | 
|  | #undef BEGIN_MGH_PROBLEM | 
|  | #undef END_MGH_PROBLEM | 
|  |  | 
|  | template<typename TestProblem> string ConstrainedSolve() { | 
|  | double x[TestProblem::kNumParameters]; | 
|  | std::copy(TestProblem::initial_x, | 
|  | TestProblem::initial_x + TestProblem::kNumParameters, | 
|  | x); | 
|  |  | 
|  | Problem problem; | 
|  | problem.AddResidualBlock(TestProblem::Create(), NULL, x); | 
|  | for (int i = 0; i < TestProblem::kNumParameters; ++i) { | 
|  | problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]); | 
|  | problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]); | 
|  | } | 
|  |  | 
|  | Solver::Options options; | 
|  | options.parameter_tolerance = 1e-18; | 
|  | options.function_tolerance = 1e-18; | 
|  | options.gradient_tolerance = 1e-18; | 
|  | options.max_num_iterations = 1000; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  |  | 
|  | const double kMinLogRelativeError = 5.0; | 
|  | const double log_relative_error = -std::log10( | 
|  | std::abs(2.0 * summary.final_cost - | 
|  | TestProblem::constrained_optimal_cost) / | 
|  | (TestProblem::constrained_optimal_cost > 0.0 | 
|  | ? TestProblem::constrained_optimal_cost | 
|  | : 1.0)); | 
|  |  | 
|  | return (log_relative_error >= kMinLogRelativeError | 
|  | ? "Success\n" | 
|  | : "Failure\n"); | 
|  | } | 
|  |  | 
|  | template<typename TestProblem> string UnconstrainedSolve() { | 
|  | double x[TestProblem::kNumParameters]; | 
|  | std::copy(TestProblem::initial_x, | 
|  | TestProblem::initial_x + TestProblem::kNumParameters, | 
|  | x); | 
|  |  | 
|  | Problem problem; | 
|  | problem.AddResidualBlock(TestProblem::Create(), NULL, x); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.parameter_tolerance = 1e-18; | 
|  | options.function_tolerance = 0.0; | 
|  | options.gradient_tolerance = 1e-18; | 
|  | options.max_num_iterations = 1000; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  |  | 
|  | const double kMinLogRelativeError = 5.0; | 
|  | const double log_relative_error = -std::log10( | 
|  | std::abs(2.0 * summary.final_cost - | 
|  | TestProblem::unconstrained_optimal_cost) / | 
|  | (TestProblem::unconstrained_optimal_cost > 0.0 | 
|  | ? TestProblem::unconstrained_optimal_cost | 
|  | : 1.0)); | 
|  |  | 
|  | return (log_relative_error >= kMinLogRelativeError | 
|  | ? "Success\n" | 
|  | : "Failure\n"); | 
|  | } | 
|  |  | 
|  | }  // namespace examples | 
|  | }  // namespace ceres | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | google::ParseCommandLineFlags(&argc, &argv, true); | 
|  | google::InitGoogleLogging(argv[0]); | 
|  |  | 
|  | using ceres::examples::UnconstrainedSolve; | 
|  | using ceres::examples::ConstrainedSolve; | 
|  |  | 
|  | #define UNCONSTRAINED_SOLVE(n)                                          \ | 
|  | std::cout << "Problem " << n << " : "                                 \ | 
|  | << UnconstrainedSolve<ceres::examples::TestProblem##n>(); | 
|  |  | 
|  | #define CONSTRAINED_SOLVE(n)                                            \ | 
|  | std::cout << "Problem " << n << " : "                                 \ | 
|  | << ConstrainedSolve<ceres::examples::TestProblem##n>(); | 
|  |  | 
|  | std::cout << "Unconstrained problems\n"; | 
|  | UNCONSTRAINED_SOLVE(1); | 
|  | UNCONSTRAINED_SOLVE(2); | 
|  | UNCONSTRAINED_SOLVE(3); | 
|  | UNCONSTRAINED_SOLVE(4); | 
|  | UNCONSTRAINED_SOLVE(5); | 
|  | UNCONSTRAINED_SOLVE(6); | 
|  | UNCONSTRAINED_SOLVE(7); | 
|  | UNCONSTRAINED_SOLVE(8); | 
|  | UNCONSTRAINED_SOLVE(9); | 
|  |  | 
|  | std::cout << "\nConstrained problems\n"; | 
|  | CONSTRAINED_SOLVE(3); | 
|  | CONSTRAINED_SOLVE(4); | 
|  | CONSTRAINED_SOLVE(5); | 
|  | CONSTRAINED_SOLVE(7); | 
|  | CONSTRAINED_SOLVE(9); | 
|  |  | 
|  | return 0; | 
|  | } |