|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2013 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/covariance.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/covariance_impl.h" | 
|  | #include "ceres/local_parameterization.h" | 
|  | #include "ceres/map_util.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | TEST(CovarianceImpl, ComputeCovarianceSparsity) { | 
|  | double parameters[10]; | 
|  |  | 
|  | double* block1 = parameters; | 
|  | double* block2 = block1 + 1; | 
|  | double* block3 = block2 + 2; | 
|  | double* block4 = block3 + 3; | 
|  |  | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // Add in random order | 
|  | problem.AddParameterBlock(block1, 1); | 
|  | problem.AddParameterBlock(block4, 4); | 
|  | problem.AddParameterBlock(block3, 3); | 
|  | problem.AddParameterBlock(block2, 2); | 
|  |  | 
|  | // Sparsity pattern | 
|  | // | 
|  | //  x 0 0 0 0 0 x x x x | 
|  | //  0 x x x x x 0 0 0 0 | 
|  | //  0 x x x x x 0 0 0 0 | 
|  | //  0 0 0 x x x 0 0 0 0 | 
|  | //  0 0 0 x x x 0 0 0 0 | 
|  | //  0 0 0 x x x 0 0 0 0 | 
|  | //  0 0 0 0 0 0 x x x x | 
|  | //  0 0 0 0 0 0 x x x x | 
|  | //  0 0 0 0 0 0 x x x x | 
|  | //  0 0 0 0 0 0 x x x x | 
|  |  | 
|  | int expected_rows[] = {0, 5, 10, 15, 18, 21, 24, 28, 32, 36, 40}; | 
|  | int expected_cols[] = {0, 6, 7, 8, 9, | 
|  | 1, 2, 3, 4, 5, | 
|  | 1, 2, 3, 4, 5, | 
|  | 3, 4, 5, | 
|  | 3, 4, 5, | 
|  | 3, 4, 5, | 
|  | 6, 7, 8, 9, | 
|  | 6, 7, 8, 9, | 
|  | 6, 7, 8, 9, | 
|  | 6, 7, 8, 9}; | 
|  |  | 
|  |  | 
|  | vector<pair<const double*, const double*> > covariance_blocks; | 
|  | covariance_blocks.push_back(make_pair(block1, block1)); | 
|  | covariance_blocks.push_back(make_pair(block4, block4)); | 
|  | covariance_blocks.push_back(make_pair(block2, block2)); | 
|  | covariance_blocks.push_back(make_pair(block3, block3)); | 
|  | covariance_blocks.push_back(make_pair(block2, block3)); | 
|  | covariance_blocks.push_back(make_pair(block4, block1));  // reversed | 
|  |  | 
|  | Covariance::Options options; | 
|  | CovarianceImpl covariance_impl(options); | 
|  | EXPECT_TRUE(covariance_impl | 
|  | .ComputeCovarianceSparsity(covariance_blocks, &problem)); | 
|  |  | 
|  | const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix(); | 
|  |  | 
|  | EXPECT_EQ(crsm->num_rows(), 10); | 
|  | EXPECT_EQ(crsm->num_cols(), 10); | 
|  | EXPECT_EQ(crsm->num_nonzeros(), 40); | 
|  |  | 
|  | const int* rows = crsm->rows(); | 
|  | for (int r = 0; r < crsm->num_rows() + 1; ++r) { | 
|  | EXPECT_EQ(rows[r], expected_rows[r]) | 
|  | << r << " " | 
|  | << rows[r] << " " | 
|  | << expected_rows[r]; | 
|  | } | 
|  |  | 
|  | const int* cols = crsm->cols(); | 
|  | for (int c = 0; c < crsm->num_nonzeros(); ++c) { | 
|  | EXPECT_EQ(cols[c], expected_cols[c]) | 
|  | << c << " " | 
|  | << cols[c] << " " | 
|  | << expected_cols[c]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | class UnaryCostFunction: public CostFunction { | 
|  | public: | 
|  | UnaryCostFunction(const int num_residuals, | 
|  | const int32 parameter_block_size, | 
|  | const double* jacobian) | 
|  | : jacobian_(jacobian, jacobian + num_residuals * parameter_block_size) { | 
|  | set_num_residuals(num_residuals); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block_size); | 
|  | } | 
|  |  | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | for (int i = 0; i < num_residuals(); ++i) { | 
|  | residuals[i] = 1; | 
|  | } | 
|  |  | 
|  | if (jacobians == NULL) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (jacobians[0] != NULL) { | 
|  | copy(jacobian_.begin(), jacobian_.end(), jacobians[0]); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | vector<double> jacobian_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | class BinaryCostFunction: public CostFunction { | 
|  | public: | 
|  | BinaryCostFunction(const int num_residuals, | 
|  | const int32 parameter_block1_size, | 
|  | const int32 parameter_block2_size, | 
|  | const double* jacobian1, | 
|  | const double* jacobian2) | 
|  | : jacobian1_(jacobian1, | 
|  | jacobian1 + num_residuals * parameter_block1_size), | 
|  | jacobian2_(jacobian2, | 
|  | jacobian2 + num_residuals * parameter_block2_size) { | 
|  | set_num_residuals(num_residuals); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block1_size); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block2_size); | 
|  | } | 
|  |  | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | for (int i = 0; i < num_residuals(); ++i) { | 
|  | residuals[i] = 2; | 
|  | } | 
|  |  | 
|  | if (jacobians == NULL) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (jacobians[0] != NULL) { | 
|  | copy(jacobian1_.begin(), jacobian1_.end(), jacobians[0]); | 
|  | } | 
|  |  | 
|  | if (jacobians[1] != NULL) { | 
|  | copy(jacobian2_.begin(), jacobian2_.end(), jacobians[1]); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | vector<double> jacobian1_; | 
|  | vector<double> jacobian2_; | 
|  | }; | 
|  |  | 
|  | // x_plus_delta = delta * x; | 
|  | class PolynomialParameterization : public LocalParameterization { | 
|  | public: | 
|  | virtual ~PolynomialParameterization() {} | 
|  |  | 
|  | virtual bool Plus(const double* x, | 
|  | const double* delta, | 
|  | double* x_plus_delta) const { | 
|  | x_plus_delta[0] = delta[0] * x[0]; | 
|  | x_plus_delta[1] = delta[0] * x[1]; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | virtual bool ComputeJacobian(const double* x, double* jacobian) const { | 
|  | jacobian[0] = x[0]; | 
|  | jacobian[1] = x[1]; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | virtual int GlobalSize() const { return 2; } | 
|  | virtual int LocalSize() const { return 1; } | 
|  | }; | 
|  |  | 
|  | class CovarianceTest : public ::testing::Test { | 
|  | protected: | 
|  | virtual void SetUp() { | 
|  | double* x = parameters_; | 
|  | double* y = x + 2; | 
|  | double* z = y + 3; | 
|  |  | 
|  | x[0] = 1; | 
|  | x[1] = 1; | 
|  | y[0] = 2; | 
|  | y[1] = 2; | 
|  | y[2] = 2; | 
|  | z[0] = 3; | 
|  |  | 
|  | { | 
|  | double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; | 
|  | problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian[] = { 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0 }; | 
|  | problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian = 5.0; | 
|  | problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian1[] = { 1.0, 2.0, 3.0 }; | 
|  | double jacobian2[] = { -5.0, -6.0 }; | 
|  | problem_.AddResidualBlock( | 
|  | new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), | 
|  | NULL, | 
|  | y, | 
|  | x); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian1[] = {2.0 }; | 
|  | double jacobian2[] = { 3.0, -2.0 }; | 
|  | problem_.AddResidualBlock( | 
|  | new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), | 
|  | NULL, | 
|  | z, | 
|  | x); | 
|  | } | 
|  |  | 
|  | all_covariance_blocks_.push_back(make_pair(x, x)); | 
|  | all_covariance_blocks_.push_back(make_pair(y, y)); | 
|  | all_covariance_blocks_.push_back(make_pair(z, z)); | 
|  | all_covariance_blocks_.push_back(make_pair(x, y)); | 
|  | all_covariance_blocks_.push_back(make_pair(x, z)); | 
|  | all_covariance_blocks_.push_back(make_pair(y, z)); | 
|  |  | 
|  | column_bounds_[x] = make_pair(0, 2); | 
|  | column_bounds_[y] = make_pair(2, 5); | 
|  | column_bounds_[z] = make_pair(5, 6); | 
|  | } | 
|  |  | 
|  | void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options, | 
|  | const double* expected_covariance) { | 
|  | // Generate all possible combination of block pairs and check if the | 
|  | // covariance computation is correct. | 
|  | for (int i = 1; i <= 64; ++i) { | 
|  | vector<pair<const double*, const double*> > covariance_blocks; | 
|  | if (i & 1) { | 
|  | covariance_blocks.push_back(all_covariance_blocks_[0]); | 
|  | } | 
|  |  | 
|  | if (i & 2) { | 
|  | covariance_blocks.push_back(all_covariance_blocks_[1]); | 
|  | } | 
|  |  | 
|  | if (i & 4) { | 
|  | covariance_blocks.push_back(all_covariance_blocks_[2]); | 
|  | } | 
|  |  | 
|  | if (i & 8) { | 
|  | covariance_blocks.push_back(all_covariance_blocks_[3]); | 
|  | } | 
|  |  | 
|  | if (i & 16) { | 
|  | covariance_blocks.push_back(all_covariance_blocks_[4]); | 
|  | } | 
|  |  | 
|  | if (i & 32) { | 
|  | covariance_blocks.push_back(all_covariance_blocks_[5]); | 
|  | } | 
|  |  | 
|  | Covariance covariance(options); | 
|  | EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_)); | 
|  |  | 
|  | for (int i = 0; i < covariance_blocks.size(); ++i) { | 
|  | const double* block1 = covariance_blocks[i].first; | 
|  | const double* block2 = covariance_blocks[i].second; | 
|  | // block1, block2 | 
|  | GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance); | 
|  | // block2, block1 | 
|  | GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void GetCovarianceBlockAndCompare(const double* block1, | 
|  | const double* block2, | 
|  | const Covariance& covariance, | 
|  | const double* expected_covariance) { | 
|  | const int row_begin = FindOrDie(column_bounds_, block1).first; | 
|  | const int row_end = FindOrDie(column_bounds_, block1).second; | 
|  | const int col_begin = FindOrDie(column_bounds_, block2).first; | 
|  | const int col_end = FindOrDie(column_bounds_, block2).second; | 
|  |  | 
|  | Matrix actual(row_end - row_begin, col_end - col_begin); | 
|  | EXPECT_TRUE(covariance.GetCovarianceBlock(block1, | 
|  | block2, | 
|  | actual.data())); | 
|  |  | 
|  | ConstMatrixRef expected(expected_covariance, 6, 6); | 
|  | double diff_norm = (expected.block(row_begin, | 
|  | col_begin, | 
|  | row_end - row_begin, | 
|  | col_end - col_begin) - actual).norm(); | 
|  | diff_norm /= (row_end - row_begin) * (col_end - col_begin); | 
|  |  | 
|  | const double kTolerance = 1e-5; | 
|  | EXPECT_NEAR(diff_norm, 0.0, kTolerance) | 
|  | << "rows: " << row_begin << " " << row_end << "  " | 
|  | << "cols: " << col_begin << " " << col_end << "  " | 
|  | << "\n\n expected: \n " << expected.block(row_begin, | 
|  | col_begin, | 
|  | row_end - row_begin, | 
|  | col_end - col_begin) | 
|  | << "\n\n actual: \n " << actual | 
|  | << "\n\n full expected: \n" << expected; | 
|  | } | 
|  |  | 
|  | double parameters_[10]; | 
|  | Problem problem_; | 
|  | vector<pair<const double*, const double*> > all_covariance_blocks_; | 
|  | map<const double*, pair<int, int> > column_bounds_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | TEST_F(CovarianceTest, NormalBehavior) { | 
|  | // J | 
|  | // | 
|  | //   1  0  0  0  0  0 | 
|  | //   0  1  0  0  0  0 | 
|  | //   0  0  2  0  0  0 | 
|  | //   0  0  0  2  0  0 | 
|  | //   0  0  0  0  2  0 | 
|  | //   0  0  0  0  0  5 | 
|  | //  -5 -6  1  2  3  0 | 
|  | //   3 -2  0  0  0  2 | 
|  |  | 
|  | // J'J | 
|  | // | 
|  | //   35  24 -5 -10 -15  6 | 
|  | //   24  41 -6 -12 -18 -4 | 
|  | //   -5  -6  5   2   3  0 | 
|  | //  -10 -12  2   8   6  0 | 
|  | //  -15 -18  3   6  13  0 | 
|  | //    6  -4  0   0   0 29 | 
|  |  | 
|  | // inv(J'J) computed using octave. | 
|  | double expected_covariance[] = { | 
|  | 7.0747e-02,  -8.4923e-03,   1.6821e-02,   3.3643e-02,   5.0464e-02,  -1.5809e-02,  // NOLINT | 
|  | -8.4923e-03,   8.1352e-02,   2.4758e-02,   4.9517e-02,   7.4275e-02,   1.2978e-02,  // NOLINT | 
|  | 1.6821e-02,   2.4758e-02,   2.4904e-01,  -1.9271e-03,  -2.8906e-03,  -6.5325e-05,  // NOLINT | 
|  | 3.3643e-02,   4.9517e-02,  -1.9271e-03,   2.4615e-01,  -5.7813e-03,  -1.3065e-04,  // NOLINT | 
|  | 5.0464e-02,   7.4275e-02,  -2.8906e-03,  -5.7813e-03,   2.4133e-01,  -1.9598e-04,  // NOLINT | 
|  | -1.5809e-02,   1.2978e-02,  -6.5325e-05,  -1.3065e-04,  -1.9598e-04,   3.9544e-02,  // NOLINT | 
|  | }; | 
|  |  | 
|  | Covariance::Options options; | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | options.algorithm_type = SPARSE_CHOLESKY; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  |  | 
|  | options.algorithm_type = SPARSE_QR; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | #endif | 
|  |  | 
|  | options.algorithm_type = DENSE_SVD; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | } | 
|  |  | 
|  | #ifdef CERES_USE_OPENMP | 
|  |  | 
|  | TEST_F(CovarianceTest, ThreadedNormalBehavior) { | 
|  | // J | 
|  | // | 
|  | //   1  0  0  0  0  0 | 
|  | //   0  1  0  0  0  0 | 
|  | //   0  0  2  0  0  0 | 
|  | //   0  0  0  2  0  0 | 
|  | //   0  0  0  0  2  0 | 
|  | //   0  0  0  0  0  5 | 
|  | //  -5 -6  1  2  3  0 | 
|  | //   3 -2  0  0  0  2 | 
|  |  | 
|  | // J'J | 
|  | // | 
|  | //   35  24 -5 -10 -15  6 | 
|  | //   24  41 -6 -12 -18 -4 | 
|  | //   -5  -6  5   2   3  0 | 
|  | //  -10 -12  2   8   6  0 | 
|  | //  -15 -18  3   6  13  0 | 
|  | //    6  -4  0   0   0 29 | 
|  |  | 
|  | // inv(J'J) computed using octave. | 
|  | double expected_covariance[] = { | 
|  | 7.0747e-02,  -8.4923e-03,   1.6821e-02,   3.3643e-02,   5.0464e-02,  -1.5809e-02,  // NOLINT | 
|  | -8.4923e-03,   8.1352e-02,   2.4758e-02,   4.9517e-02,   7.4275e-02,   1.2978e-02,  // NOLINT | 
|  | 1.6821e-02,   2.4758e-02,   2.4904e-01,  -1.9271e-03,  -2.8906e-03,  -6.5325e-05,  // NOLINT | 
|  | 3.3643e-02,   4.9517e-02,  -1.9271e-03,   2.4615e-01,  -5.7813e-03,  -1.3065e-04,  // NOLINT | 
|  | 5.0464e-02,   7.4275e-02,  -2.8906e-03,  -5.7813e-03,   2.4133e-01,  -1.9598e-04,  // NOLINT | 
|  | -1.5809e-02,   1.2978e-02,  -6.5325e-05,  -1.3065e-04,  -1.9598e-04,   3.9544e-02,  // NOLINT | 
|  | }; | 
|  |  | 
|  | Covariance::Options options; | 
|  | options.num_threads = 4; | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | options.algorithm_type = SPARSE_CHOLESKY; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  |  | 
|  | options.algorithm_type = SPARSE_QR; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | #endif | 
|  |  | 
|  | options.algorithm_type = DENSE_SVD; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | } | 
|  |  | 
|  | #endif  // CERES_USE_OPENMP | 
|  |  | 
|  | TEST_F(CovarianceTest, ConstantParameterBlock) { | 
|  | problem_.SetParameterBlockConstant(parameters_); | 
|  |  | 
|  | // J | 
|  | // | 
|  | //  0  0  0  0  0  0 | 
|  | //  0  0  0  0  0  0 | 
|  | //  0  0  2  0  0  0 | 
|  | //  0  0  0  2  0  0 | 
|  | //  0  0  0  0  2  0 | 
|  | //  0  0  0  0  0  5 | 
|  | //  0  0  1  2  3  0 | 
|  | //  0  0  0  0  0  2 | 
|  |  | 
|  | // J'J | 
|  | // | 
|  | //  0  0  0  0  0  0 | 
|  | //  0  0  0  0  0  0 | 
|  | //  0  0  5  2  3  0 | 
|  | //  0  0  2  8  6  0 | 
|  | //  0  0  3  6 13  0 | 
|  | //  0  0  0  0  0 29 | 
|  |  | 
|  | // pinv(J'J) computed using octave. | 
|  | double expected_covariance[] = { | 
|  | 0,            0,            0,            0,            0,            0,  // NOLINT | 
|  | 0,            0,            0,            0,            0,            0,  // NOLINT | 
|  | 0,            0,      0.23611,     -0.02778,     -0.04167,     -0.00000,  // NOLINT | 
|  | 0,            0,     -0.02778,      0.19444,     -0.08333,     -0.00000,  // NOLINT | 
|  | 0,            0,     -0.04167,     -0.08333,      0.12500,     -0.00000,  // NOLINT | 
|  | 0,            0,     -0.00000,     -0.00000,     -0.00000,      0.03448   // NOLINT | 
|  | }; | 
|  |  | 
|  | Covariance::Options options; | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | options.algorithm_type = SPARSE_CHOLESKY; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  |  | 
|  | options.algorithm_type = SPARSE_QR; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | #endif | 
|  |  | 
|  | options.algorithm_type = DENSE_SVD; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | } | 
|  |  | 
|  | TEST_F(CovarianceTest, LocalParameterization) { | 
|  | double* x = parameters_; | 
|  | double* y = x + 2; | 
|  |  | 
|  | problem_.SetParameterization(x, new PolynomialParameterization); | 
|  |  | 
|  | vector<int> subset; | 
|  | subset.push_back(2); | 
|  | problem_.SetParameterization(y, new SubsetParameterization(3, subset)); | 
|  |  | 
|  | // Raw Jacobian: J | 
|  | // | 
|  | //   1   0  0  0  0  0 | 
|  | //   0   1  0  0  0  0 | 
|  | //   0   0  2  0  0  0 | 
|  | //   0   0  0  2  0  0 | 
|  | //   0   0  0  0  0  0 | 
|  | //   0   0  0  0  0  5 | 
|  | //  -5  -6  1  2  0  0 | 
|  | //   3  -2  0  0  0  2 | 
|  |  | 
|  | // Global to local jacobian: A | 
|  | // | 
|  | // | 
|  | //  1   0   0   0   0 | 
|  | //  1   0   0   0   0 | 
|  | //  0   1   0   0   0 | 
|  | //  0   0   1   0   0 | 
|  | //  0   0   0   1   0 | 
|  | //  0   0   0   0   1 | 
|  |  | 
|  | // A * pinv((J*A)'*(J*A)) * A' | 
|  | // Computed using octave. | 
|  | double expected_covariance[] = { | 
|  | 0.01766,   0.01766,   0.02158,   0.04316,   0.00000,  -0.00122, | 
|  | 0.01766,   0.01766,   0.02158,   0.04316,   0.00000,  -0.00122, | 
|  | 0.02158,   0.02158,   0.24860,  -0.00281,   0.00000,  -0.00149, | 
|  | 0.04316,   0.04316,  -0.00281,   0.24439,   0.00000,  -0.00298, | 
|  | 0.00000,   0.00000,   0.00000,   0.00000,   0.00000,   0.00000, | 
|  | -0.00122,  -0.00122,  -0.00149,  -0.00298,   0.00000,   0.03457 | 
|  | }; | 
|  |  | 
|  | Covariance::Options options; | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | options.algorithm_type = SPARSE_CHOLESKY; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  |  | 
|  | options.algorithm_type = SPARSE_QR; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | #endif | 
|  |  | 
|  | options.algorithm_type = DENSE_SVD; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | } | 
|  |  | 
|  |  | 
|  | TEST_F(CovarianceTest, TruncatedRank) { | 
|  | // J | 
|  | // | 
|  | //   1  0  0  0  0  0 | 
|  | //   0  1  0  0  0  0 | 
|  | //   0  0  2  0  0  0 | 
|  | //   0  0  0  2  0  0 | 
|  | //   0  0  0  0  2  0 | 
|  | //   0  0  0  0  0  5 | 
|  | //  -5 -6  1  2  3  0 | 
|  | //   3 -2  0  0  0  2 | 
|  |  | 
|  | // J'J | 
|  | // | 
|  | //   35  24 -5 -10 -15  6 | 
|  | //   24  41 -6 -12 -18 -4 | 
|  | //   -5  -6  5   2   3  0 | 
|  | //  -10 -12  2   8   6  0 | 
|  | //  -15 -18  3   6  13  0 | 
|  | //    6  -4  0   0   0 29 | 
|  |  | 
|  | // 3.4142 is the smallest eigen value of J'J. The following matrix | 
|  | // was obtained by dropping the eigenvector corresponding to this | 
|  | // eigenvalue. | 
|  | double expected_covariance[] = { | 
|  | 5.4135e-02,  -3.5121e-02,   1.7257e-04,   3.4514e-04,   5.1771e-04,  -1.6076e-02, | 
|  | -3.5121e-02,   3.8667e-02,  -1.9288e-03,  -3.8576e-03,  -5.7864e-03,   1.2549e-02, | 
|  | 1.7257e-04,  -1.9288e-03,   2.3235e-01,  -3.5297e-02,  -5.2946e-02,  -3.3329e-04, | 
|  | 3.4514e-04,  -3.8576e-03,  -3.5297e-02,   1.7941e-01,  -1.0589e-01,  -6.6659e-04, | 
|  | 5.1771e-04,  -5.7864e-03,  -5.2946e-02,  -1.0589e-01,   9.1162e-02,  -9.9988e-04, | 
|  | -1.6076e-02,   1.2549e-02,  -3.3329e-04,  -6.6659e-04,  -9.9988e-04,   3.9539e-02 | 
|  | }; | 
|  |  | 
|  |  | 
|  | { | 
|  | Covariance::Options options; | 
|  | options.algorithm_type = DENSE_SVD; | 
|  | // Force dropping of the smallest eigenvector. | 
|  | options.null_space_rank = 1; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | } | 
|  |  | 
|  | { | 
|  | Covariance::Options options; | 
|  | options.algorithm_type = DENSE_SVD; | 
|  | // Force dropping of the smallest eigenvector via the ratio but | 
|  | // automatic truncation. | 
|  | options.min_reciprocal_condition_number = 0.044494; | 
|  | options.null_space_rank = -1; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | } | 
|  | } | 
|  |  | 
|  | class RankDeficientCovarianceTest : public CovarianceTest { | 
|  | protected: | 
|  | virtual void SetUp() { | 
|  | double* x = parameters_; | 
|  | double* y = x + 2; | 
|  | double* z = y + 3; | 
|  |  | 
|  | { | 
|  | double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; | 
|  | problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; | 
|  | problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian = 5.0; | 
|  | problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian1[] = { 0.0, 0.0, 0.0 }; | 
|  | double jacobian2[] = { -5.0, -6.0 }; | 
|  | problem_.AddResidualBlock( | 
|  | new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), | 
|  | NULL, | 
|  | y, | 
|  | x); | 
|  | } | 
|  |  | 
|  | { | 
|  | double jacobian1[] = {2.0 }; | 
|  | double jacobian2[] = { 3.0, -2.0 }; | 
|  | problem_.AddResidualBlock( | 
|  | new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), | 
|  | NULL, | 
|  | z, | 
|  | x); | 
|  | } | 
|  |  | 
|  | all_covariance_blocks_.push_back(make_pair(x, x)); | 
|  | all_covariance_blocks_.push_back(make_pair(y, y)); | 
|  | all_covariance_blocks_.push_back(make_pair(z, z)); | 
|  | all_covariance_blocks_.push_back(make_pair(x, y)); | 
|  | all_covariance_blocks_.push_back(make_pair(x, z)); | 
|  | all_covariance_blocks_.push_back(make_pair(y, z)); | 
|  |  | 
|  | column_bounds_[x] = make_pair(0, 2); | 
|  | column_bounds_[y] = make_pair(2, 5); | 
|  | column_bounds_[z] = make_pair(5, 6); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST_F(RankDeficientCovarianceTest, AutomaticTruncation) { | 
|  | // J | 
|  | // | 
|  | //   1  0  0  0  0  0 | 
|  | //   0  1  0  0  0  0 | 
|  | //   0  0  0  0  0  0 | 
|  | //   0  0  0  0  0  0 | 
|  | //   0  0  0  0  0  0 | 
|  | //   0  0  0  0  0  5 | 
|  | //  -5 -6  0  0  0  0 | 
|  | //   3 -2  0  0  0  2 | 
|  |  | 
|  | // J'J | 
|  | // | 
|  | //  35 24  0  0  0  6 | 
|  | //  24 41  0  0  0 -4 | 
|  | //   0  0  0  0  0  0 | 
|  | //   0  0  0  0  0  0 | 
|  | //   0  0  0  0  0  0 | 
|  | //   6 -4  0  0  0 29 | 
|  |  | 
|  | // pinv(J'J) computed using octave. | 
|  | double expected_covariance[] = { | 
|  | 0.053998,  -0.033145,   0.000000,   0.000000,   0.000000,  -0.015744, | 
|  | -0.033145,   0.045067,   0.000000,   0.000000,   0.000000,   0.013074, | 
|  | 0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000, | 
|  | 0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000, | 
|  | 0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000, | 
|  | -0.015744,   0.013074,   0.000000,   0.000000,   0.000000,   0.039543 | 
|  | }; | 
|  |  | 
|  | Covariance::Options options; | 
|  | options.algorithm_type = DENSE_SVD; | 
|  | options.null_space_rank = -1; | 
|  | ComputeAndCompareCovarianceBlocks(options, expected_covariance); | 
|  | } | 
|  |  | 
|  | class LargeScaleCovarianceTest : public ::testing::Test { | 
|  | protected: | 
|  | virtual void SetUp() { | 
|  | num_parameter_blocks_ = 2000; | 
|  | parameter_block_size_ = 5; | 
|  | parameters_.reset(new double[parameter_block_size_ * num_parameter_blocks_]); | 
|  |  | 
|  | Matrix jacobian(parameter_block_size_, parameter_block_size_); | 
|  | for (int i = 0; i < num_parameter_blocks_; ++i) { | 
|  | jacobian.setIdentity(); | 
|  | jacobian *= (i + 1); | 
|  |  | 
|  | double* block_i = parameters_.get() + i * parameter_block_size_; | 
|  | problem_.AddResidualBlock(new UnaryCostFunction(parameter_block_size_, | 
|  | parameter_block_size_, | 
|  | jacobian.data()), | 
|  | NULL, | 
|  | block_i); | 
|  | for (int j = i; j < num_parameter_blocks_; ++j) { | 
|  | double* block_j = parameters_.get() + j * parameter_block_size_; | 
|  | all_covariance_blocks_.push_back(make_pair(block_i, block_j)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ComputeAndCompare(CovarianceAlgorithmType algorithm_type, | 
|  | int num_threads) { | 
|  | Covariance::Options options; | 
|  | options.algorithm_type = algorithm_type; | 
|  | options.num_threads = num_threads; | 
|  | Covariance covariance(options); | 
|  | EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_)); | 
|  |  | 
|  | Matrix expected(parameter_block_size_, parameter_block_size_); | 
|  | Matrix actual(parameter_block_size_, parameter_block_size_); | 
|  | const double kTolerance = 1e-16; | 
|  |  | 
|  | for (int i = 0; i < num_parameter_blocks_; ++i) { | 
|  | expected.setIdentity(); | 
|  | expected /= (i + 1.0) * (i + 1.0); | 
|  |  | 
|  | double* block_i = parameters_.get() + i * parameter_block_size_; | 
|  | covariance.GetCovarianceBlock(block_i, block_i, actual.data()); | 
|  | EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) | 
|  | << "block: " << i << ", " << i << "\n" | 
|  | << "expected: \n" << expected << "\n" | 
|  | << "actual: \n" << actual; | 
|  |  | 
|  | expected.setZero(); | 
|  | for (int j = i + 1; j < num_parameter_blocks_; ++j) { | 
|  | double* block_j = parameters_.get() + j * parameter_block_size_; | 
|  | covariance.GetCovarianceBlock(block_i, block_j, actual.data()); | 
|  | EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) | 
|  | << "block: " << i << ", " << j << "\n" | 
|  | << "expected: \n" << expected << "\n" | 
|  | << "actual: \n" << actual; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | scoped_array<double> parameters_; | 
|  | int parameter_block_size_; | 
|  | int num_parameter_blocks_; | 
|  |  | 
|  | Problem problem_; | 
|  | vector<pair<const double*, const double*> > all_covariance_blocks_; | 
|  | }; | 
|  |  | 
|  | #if !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) | 
|  |  | 
|  | TEST_F(LargeScaleCovarianceTest, Parallel) { | 
|  | ComputeAndCompare(SPARSE_CHOLESKY, 4); | 
|  | ComputeAndCompare(SPARSE_QR, 4); | 
|  | } | 
|  |  | 
|  | #endif  // !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |