Add a polynomial solver

Add a function to find the (complex) roots of a polynomial
with real coefficients. The roots are extracted as the
eigenvalues of the (balanced) companion matrix. Also adds a test.
The polynomial solver will be needed in the Dogleg subspace
strategy.

Change-Id: Ia6626158819efb858522b7f4998649ca010d6688
diff --git a/internal/ceres/polynomial_solver.cc b/internal/ceres/polynomial_solver.cc
new file mode 100644
index 0000000..91c6001
--- /dev/null
+++ b/internal/ceres/polynomial_solver.cc
@@ -0,0 +1,187 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: moll.markus@arcor.de (Markus Moll)
+
+#include "ceres/polynomial_solver.h"
+
+#include <glog/logging.h>
+#include <cmath>
+#include <cstddef>
+
+#include "Eigen/Dense"
+#include "ceres/internal/port.h"
+
+namespace ceres {
+namespace internal {
+namespace {
+
+// Balancing function as described by B. N. Parlett and C. Reinsch,
+// "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
+// In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
+// Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
+void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
+  CHECK_NOTNULL(companion_matrix_ptr);
+  Matrix& companion_matrix = *companion_matrix_ptr;
+  Matrix companion_matrix_offdiagonal = companion_matrix;
+  companion_matrix_offdiagonal.diagonal().setZero();
+
+  const int degree = companion_matrix.rows();
+
+  // gamma <= 1 controls how much a change in the scaling has to
+  // lower the 1-norm of the companion matrix to be accepted.
+  //
+  // gamma = 1 seems to lead to cycles (numerical issues?), so
+  // we set it slightly lower.
+  const double gamma = 0.9;
+
+  // Greedily scale row/column pairs until there is no change.
+  bool scaling_has_changed;
+  do {
+    scaling_has_changed = false;
+
+    for (int i = 0; i < degree; ++i) {
+      const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
+      const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
+
+      // Decompose row_norm/col_norm into mantissa * 2^exponent,
+      // where 0.5 <= mantissa < 1. Discard mantissa (return value
+      // of frexp), as only the exponent is needed.
+      int exponent = 0;
+      std::frexp(row_norm / col_norm, &exponent);
+      exponent /= 2;
+
+      if (exponent != 0) {
+        const double scaled_col_norm = std::ldexp(col_norm, exponent);
+        const double scaled_row_norm = std::ldexp(row_norm, -exponent);
+        if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
+          // Accept the new scaling. (Multiplication by powers of 2 should not
+          // introduce rounding errors (ignoring non-normalized numbers and
+          // over- or underflow))
+          scaling_has_changed = true;
+          companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
+          companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
+        }
+      }
+    }
+  } while (scaling_has_changed);
+
+  companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
+  companion_matrix = companion_matrix_offdiagonal;
+  VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
+}
+
+void BuildCompanionMatrix(const Vector& polynomial,
+                          Matrix* companion_matrix_ptr) {
+  CHECK_NOTNULL(companion_matrix_ptr);
+  Matrix& companion_matrix = *companion_matrix_ptr;
+
+  const int degree = polynomial.size() - 1;
+
+  companion_matrix.resize(degree, degree);
+  companion_matrix.setZero();
+  companion_matrix.diagonal(-1).setOnes();
+  companion_matrix.col(degree-1) = -polynomial.reverse().head(degree-1);
+}
+
+// Remove leading terms with zero coefficients.
+Vector RemoveLeadingZeros(const Vector& polynomial_in) {
+  int i = 0;
+  while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
+    ++i;
+  }
+  return polynomial_in.tail(polynomial_in.size() - i);
+}
+}  // namespace
+
+bool FindPolynomialRoots(const Vector& polynomial_in,
+                         Vector* real,
+                         Vector* imaginary) {
+  const double epsilon = std::numeric_limits<double>::epsilon();
+
+  if (polynomial_in.size() == 0) {
+    LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
+    return false;
+  }
+
+  Vector polynomial = RemoveLeadingZeros(polynomial_in);
+  const int degree = polynomial.size() - 1;
+
+  // Is the polynomial constant?
+  if (degree == 0) {
+    LOG(WARNING) << "Trying to extract roots from a constant "
+                 << "polynomial in FindPolynomialRoots";
+    return true;
+  }
+
+  // Divide by leading term
+  const double leading_term = polynomial(0);
+  polynomial /= leading_term;
+
+  // Separately handle linear polynomials.
+  if (degree == 1) {
+    if (real != NULL) {
+      real->resize(1);
+      (*real)(0) = -polynomial(1);
+    }
+    if (imaginary != NULL) {
+      imaginary->resize(1);
+      imaginary->setZero();
+    }
+  }
+
+  // The degree is now known to be at least 2.
+  // Build and balance the companion matrix to the polynomial.
+  Matrix companion_matrix(degree, degree);
+  BuildCompanionMatrix(polynomial, &companion_matrix);
+  BalanceCompanionMatrix(&companion_matrix);
+
+  // Find its (complex) eigenvalues.
+  Eigen::EigenSolver<Matrix> solver(companion_matrix,
+                                    Eigen::EigenvaluesOnly);
+  if (solver.info() != Eigen::Success) {
+    LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
+    return false;
+  }
+
+  // Output roots
+  if (real != NULL) {
+    *real = solver.eigenvalues().real();
+  } else {
+    LOG(WARNING) << "NULL pointer passed as real argument to "
+                 << "FindPolynomialRoots. Real parts of the roots will not "
+                 << "be returned.";
+  }
+  if (imaginary != NULL) {
+    *imaginary = solver.eigenvalues().imag();
+  }
+  return true;
+}
+
+}  // namespace internal
+}  // namespace ceres