| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | //         mierle@gmail.com (Keir Mierle) | 
 | //         tbennun@gmail.com (Tal Ben-Nun) | 
 | // | 
 | // Finite differencing routines used by NumericDiffCostFunction. | 
 |  | 
 | #ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ | 
 | #define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ | 
 |  | 
 | #include <cstring> | 
 | #include <utility> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "Eigen/StdVector" | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/internal/fixed_array.h" | 
 | #include "ceres/internal/variadic_evaluate.h" | 
 | #include "ceres/numeric_diff_options.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | // This is split from the main class because C++ doesn't allow partial template | 
 | // specializations for member functions. The alternative is to repeat the main | 
 | // class for differing numbers of parameters, which is also unfortunate. | 
 | template <typename CostFunctor, | 
 |           NumericDiffMethodType kMethod, | 
 |           int kNumResiduals, | 
 |           typename ParameterDims, | 
 |           int kParameterBlock, | 
 |           int kParameterBlockSize> | 
 | struct NumericDiff { | 
 |   // Mutates parameters but must restore them before return. | 
 |   static bool EvaluateJacobianForParameterBlock( | 
 |       const CostFunctor* functor, | 
 |       const double* residuals_at_eval_point, | 
 |       const NumericDiffOptions& options, | 
 |       int num_residuals, | 
 |       int parameter_block_index, | 
 |       int parameter_block_size, | 
 |       double** parameters, | 
 |       double* jacobian) { | 
 |     using Eigen::ColMajor; | 
 |     using Eigen::Map; | 
 |     using Eigen::Matrix; | 
 |     using Eigen::RowMajor; | 
 |  | 
 |     DCHECK(jacobian); | 
 |  | 
 |     const int num_residuals_internal = | 
 |         (kNumResiduals != ceres::DYNAMIC ? kNumResiduals : num_residuals); | 
 |     const int parameter_block_index_internal = | 
 |         (kParameterBlock != ceres::DYNAMIC ? kParameterBlock | 
 |                                            : parameter_block_index); | 
 |     const int parameter_block_size_internal = | 
 |         (kParameterBlockSize != ceres::DYNAMIC ? kParameterBlockSize | 
 |                                                : parameter_block_size); | 
 |  | 
 |     using ResidualVector = Matrix<double, kNumResiduals, 1>; | 
 |     using ParameterVector = Matrix<double, kParameterBlockSize, 1>; | 
 |  | 
 |     // The convoluted reasoning for choosing the Row/Column major | 
 |     // ordering of the matrix is an artifact of the restrictions in | 
 |     // Eigen that prevent it from creating RowMajor matrices with a | 
 |     // single column. In these cases, we ask for a ColMajor matrix. | 
 |     using JacobianMatrix = | 
 |         Matrix<double, | 
 |                kNumResiduals, | 
 |                kParameterBlockSize, | 
 |                (kParameterBlockSize == 1) ? ColMajor : RowMajor>; | 
 |  | 
 |     Map<JacobianMatrix> parameter_jacobian( | 
 |         jacobian, num_residuals_internal, parameter_block_size_internal); | 
 |  | 
 |     Map<ParameterVector> x_plus_delta( | 
 |         parameters[parameter_block_index_internal], | 
 |         parameter_block_size_internal); | 
 |     ParameterVector x(x_plus_delta); | 
 |     ParameterVector step_size = | 
 |         x.array().abs() * ((kMethod == RIDDERS) | 
 |                                ? options.ridders_relative_initial_step_size | 
 |                                : options.relative_step_size); | 
 |  | 
 |     // It is not a good idea to make the step size arbitrarily | 
 |     // small. This will lead to problems with round off and numerical | 
 |     // instability when dividing by the step size. The general | 
 |     // recommendation is to not go down below sqrt(epsilon). | 
 |     double min_step_size = std::sqrt(std::numeric_limits<double>::epsilon()); | 
 |  | 
 |     // For Ridders' method, the initial step size is required to be large, | 
 |     // thus ridders_relative_initial_step_size is used. | 
 |     if (kMethod == RIDDERS) { | 
 |       min_step_size = | 
 |           (std::max)(min_step_size, options.ridders_relative_initial_step_size); | 
 |     } | 
 |  | 
 |     // For each parameter in the parameter block, use finite differences to | 
 |     // compute the derivative for that parameter. | 
 |     FixedArray<double> temp_residual_array(num_residuals_internal); | 
 |     FixedArray<double> residual_array(num_residuals_internal); | 
 |     Map<ResidualVector> residuals(residual_array.data(), | 
 |                                   num_residuals_internal); | 
 |  | 
 |     for (int j = 0; j < parameter_block_size_internal; ++j) { | 
 |       const double delta = (std::max)(min_step_size, step_size(j)); | 
 |  | 
 |       if (kMethod == RIDDERS) { | 
 |         if (!EvaluateRiddersJacobianColumn(functor, | 
 |                                            j, | 
 |                                            delta, | 
 |                                            options, | 
 |                                            num_residuals_internal, | 
 |                                            parameter_block_size_internal, | 
 |                                            x.data(), | 
 |                                            residuals_at_eval_point, | 
 |                                            parameters, | 
 |                                            x_plus_delta.data(), | 
 |                                            temp_residual_array.data(), | 
 |                                            residual_array.data())) { | 
 |           return false; | 
 |         } | 
 |       } else { | 
 |         if (!EvaluateJacobianColumn(functor, | 
 |                                     j, | 
 |                                     delta, | 
 |                                     num_residuals_internal, | 
 |                                     parameter_block_size_internal, | 
 |                                     x.data(), | 
 |                                     residuals_at_eval_point, | 
 |                                     parameters, | 
 |                                     x_plus_delta.data(), | 
 |                                     temp_residual_array.data(), | 
 |                                     residual_array.data())) { | 
 |           return false; | 
 |         } | 
 |       } | 
 |  | 
 |       parameter_jacobian.col(j).matrix() = residuals; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   static bool EvaluateJacobianColumn(const CostFunctor* functor, | 
 |                                      int parameter_index, | 
 |                                      double delta, | 
 |                                      int num_residuals, | 
 |                                      int parameter_block_size, | 
 |                                      const double* x_ptr, | 
 |                                      const double* residuals_at_eval_point, | 
 |                                      double** parameters, | 
 |                                      double* x_plus_delta_ptr, | 
 |                                      double* temp_residuals_ptr, | 
 |                                      double* residuals_ptr) { | 
 |     using Eigen::Map; | 
 |     using Eigen::Matrix; | 
 |  | 
 |     using ResidualVector = Matrix<double, kNumResiduals, 1>; | 
 |     using ParameterVector = Matrix<double, kParameterBlockSize, 1>; | 
 |  | 
 |     Map<const ParameterVector> x(x_ptr, parameter_block_size); | 
 |     Map<ParameterVector> x_plus_delta(x_plus_delta_ptr, parameter_block_size); | 
 |  | 
 |     Map<ResidualVector> residuals(residuals_ptr, num_residuals); | 
 |     Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals); | 
 |  | 
 |     // Mutate 1 element at a time and then restore. | 
 |     x_plus_delta(parameter_index) = x(parameter_index) + delta; | 
 |  | 
 |     if (!VariadicEvaluate<ParameterDims>( | 
 |             *functor, parameters, residuals.data())) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Compute this column of the jacobian in 3 steps: | 
 |     // 1. Store residuals for the forward part. | 
 |     // 2. Subtract residuals for the backward (or 0) part. | 
 |     // 3. Divide out the run. | 
 |     double one_over_delta = 1.0 / delta; | 
 |     if (kMethod == CENTRAL || kMethod == RIDDERS) { | 
 |       // Compute the function on the other side of x(parameter_index). | 
 |       x_plus_delta(parameter_index) = x(parameter_index) - delta; | 
 |  | 
 |       if (!VariadicEvaluate<ParameterDims>( | 
 |               *functor, parameters, temp_residuals.data())) { | 
 |         return false; | 
 |       } | 
 |  | 
 |       residuals -= temp_residuals; | 
 |       one_over_delta /= 2; | 
 |     } else { | 
 |       // Forward difference only; reuse existing residuals evaluation. | 
 |       residuals -= | 
 |           Map<const ResidualVector>(residuals_at_eval_point, num_residuals); | 
 |     } | 
 |  | 
 |     // Restore x_plus_delta. | 
 |     x_plus_delta(parameter_index) = x(parameter_index); | 
 |  | 
 |     // Divide out the run to get slope. | 
 |     residuals *= one_over_delta; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   // This numeric difference implementation uses adaptive differentiation | 
 |   // on the parameters to obtain the Jacobian matrix. The adaptive algorithm | 
 |   // is based on Ridders' method for adaptive differentiation, which creates | 
 |   // a Romberg tableau from varying step sizes and extrapolates the | 
 |   // intermediate results to obtain the current computational error. | 
 |   // | 
 |   // References: | 
 |   // C.J.F. Ridders, Accurate computation of F'(x) and F'(x) F"(x), Advances | 
 |   // in Engineering Software (1978), Volume 4, Issue 2, April 1982, | 
 |   // Pages 75-76, ISSN 0141-1195, | 
 |   // http://dx.doi.org/10.1016/S0141-1195(82)80057-0. | 
 |   static bool EvaluateRiddersJacobianColumn( | 
 |       const CostFunctor* functor, | 
 |       int parameter_index, | 
 |       double delta, | 
 |       const NumericDiffOptions& options, | 
 |       int num_residuals, | 
 |       int parameter_block_size, | 
 |       const double* x_ptr, | 
 |       const double* residuals_at_eval_point, | 
 |       double** parameters, | 
 |       double* x_plus_delta_ptr, | 
 |       double* temp_residuals_ptr, | 
 |       double* residuals_ptr) { | 
 |     using Eigen::aligned_allocator; | 
 |     using Eigen::Map; | 
 |     using Eigen::Matrix; | 
 |  | 
 |     using ResidualVector = Matrix<double, kNumResiduals, 1>; | 
 |     using ResidualCandidateMatrix = | 
 |         Matrix<double, kNumResiduals, Eigen::Dynamic>; | 
 |     using ParameterVector = Matrix<double, kParameterBlockSize, 1>; | 
 |  | 
 |     Map<const ParameterVector> x(x_ptr, parameter_block_size); | 
 |     Map<ParameterVector> x_plus_delta(x_plus_delta_ptr, parameter_block_size); | 
 |  | 
 |     Map<ResidualVector> residuals(residuals_ptr, num_residuals); | 
 |     Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals); | 
 |  | 
 |     // In order for the algorithm to converge, the step size should be | 
 |     // initialized to a value that is large enough to produce a significant | 
 |     // change in the function. | 
 |     // As the derivative is estimated, the step size decreases. | 
 |     // By default, the step sizes are chosen so that the middle column | 
 |     // of the Romberg tableau uses the input delta. | 
 |     double current_step_size = | 
 |         delta * pow(options.ridders_step_shrink_factor, | 
 |                     options.max_num_ridders_extrapolations / 2); | 
 |  | 
 |     // Double-buffering temporary differential candidate vectors | 
 |     // from previous step size. | 
 |     ResidualCandidateMatrix stepsize_candidates_a( | 
 |         num_residuals, options.max_num_ridders_extrapolations); | 
 |     ResidualCandidateMatrix stepsize_candidates_b( | 
 |         num_residuals, options.max_num_ridders_extrapolations); | 
 |     ResidualCandidateMatrix* current_candidates = &stepsize_candidates_a; | 
 |     ResidualCandidateMatrix* previous_candidates = &stepsize_candidates_b; | 
 |  | 
 |     // Represents the computational error of the derivative. This variable is | 
 |     // initially set to a large value, and is set to the difference between | 
 |     // current and previous finite difference extrapolations. | 
 |     // norm_error is supposed to decrease as the finite difference tableau | 
 |     // generation progresses, serving both as an estimate for differentiation | 
 |     // error and as a measure of differentiation numerical stability. | 
 |     double norm_error = (std::numeric_limits<double>::max)(); | 
 |  | 
 |     // Loop over decreasing step sizes until: | 
 |     //  1. Error is smaller than a given value (ridders_epsilon), | 
 |     //  2. Maximal order of extrapolation reached, or | 
 |     //  3. Extrapolation becomes numerically unstable. | 
 |     for (int i = 0; i < options.max_num_ridders_extrapolations; ++i) { | 
 |       // Compute the numerical derivative at this step size. | 
 |       if (!EvaluateJacobianColumn(functor, | 
 |                                   parameter_index, | 
 |                                   current_step_size, | 
 |                                   num_residuals, | 
 |                                   parameter_block_size, | 
 |                                   x.data(), | 
 |                                   residuals_at_eval_point, | 
 |                                   parameters, | 
 |                                   x_plus_delta.data(), | 
 |                                   temp_residuals.data(), | 
 |                                   current_candidates->col(0).data())) { | 
 |         // Something went wrong; bail. | 
 |         return false; | 
 |       } | 
 |  | 
 |       // Store initial results. | 
 |       if (i == 0) { | 
 |         residuals = current_candidates->col(0); | 
 |       } | 
 |  | 
 |       // Shrink differentiation step size. | 
 |       current_step_size /= options.ridders_step_shrink_factor; | 
 |  | 
 |       // Extrapolation factor for Richardson acceleration method (see below). | 
 |       double richardson_factor = options.ridders_step_shrink_factor * | 
 |                                  options.ridders_step_shrink_factor; | 
 |       for (int k = 1; k <= i; ++k) { | 
 |         // Extrapolate the various orders of finite differences using | 
 |         // the Richardson acceleration method. | 
 |         current_candidates->col(k) = | 
 |             (richardson_factor * current_candidates->col(k - 1) - | 
 |              previous_candidates->col(k - 1)) / | 
 |             (richardson_factor - 1.0); | 
 |  | 
 |         richardson_factor *= options.ridders_step_shrink_factor * | 
 |                              options.ridders_step_shrink_factor; | 
 |  | 
 |         // Compute the difference between the previous value and the current. | 
 |         double candidate_error = (std::max)( | 
 |             (current_candidates->col(k) - current_candidates->col(k - 1)) | 
 |                 .norm(), | 
 |             (current_candidates->col(k) - previous_candidates->col(k - 1)) | 
 |                 .norm()); | 
 |  | 
 |         // If the error has decreased, update results. | 
 |         if (candidate_error <= norm_error) { | 
 |           norm_error = candidate_error; | 
 |           residuals = current_candidates->col(k); | 
 |  | 
 |           // If the error is small enough, stop. | 
 |           if (norm_error < options.ridders_epsilon) { | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // After breaking out of the inner loop, declare convergence. | 
 |       if (norm_error < options.ridders_epsilon) { | 
 |         break; | 
 |       } | 
 |  | 
 |       // Check to see if the current gradient estimate is numerically unstable. | 
 |       // If so, bail out and return the last stable result. | 
 |       if (i > 0) { | 
 |         double tableau_error = | 
 |             (current_candidates->col(i) - previous_candidates->col(i - 1)) | 
 |                 .norm(); | 
 |  | 
 |         // Compare current error to the chosen candidate's error. | 
 |         if (tableau_error >= 2 * norm_error) { | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       std::swap(current_candidates, previous_candidates); | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | // This function calls NumericDiff<...>::EvaluateJacobianForParameterBlock for | 
 | // each parameter block. | 
 | // | 
 | // Example: | 
 | // A call to | 
 | // EvaluateJacobianForParameterBlocks<StaticParameterDims<2, 3>>( | 
 | //        functor, | 
 | //        residuals_at_eval_point, | 
 | //        options, | 
 | //        num_residuals, | 
 | //        parameters, | 
 | //        jacobians); | 
 | // will result in the following calls to | 
 | // NumericDiff<...>::EvaluateJacobianForParameterBlock: | 
 | // | 
 | // if (jacobians[0] != nullptr) { | 
 | //   if (!NumericDiff< | 
 | //           CostFunctor, | 
 | //           method, | 
 | //           kNumResiduals, | 
 | //           StaticParameterDims<2, 3>, | 
 | //           0, | 
 | //           2>::EvaluateJacobianForParameterBlock(functor, | 
 | //                                                 residuals_at_eval_point, | 
 | //                                                 options, | 
 | //                                                 num_residuals, | 
 | //                                                 0, | 
 | //                                                 2, | 
 | //                                                 parameters, | 
 | //                                                 jacobians[0])) { | 
 | //     return false; | 
 | //   } | 
 | // } | 
 | // if (jacobians[1] != nullptr) { | 
 | //   if (!NumericDiff< | 
 | //           CostFunctor, | 
 | //           method, | 
 | //           kNumResiduals, | 
 | //           StaticParameterDims<2, 3>, | 
 | //           1, | 
 | //           3>::EvaluateJacobianForParameterBlock(functor, | 
 | //                                                 residuals_at_eval_point, | 
 | //                                                 options, | 
 | //                                                 num_residuals, | 
 | //                                                 1, | 
 | //                                                 3, | 
 | //                                                 parameters, | 
 | //                                                 jacobians[1])) { | 
 | //     return false; | 
 | //   } | 
 | // } | 
 | template <typename ParameterDims, | 
 |           typename Parameters = typename ParameterDims::Parameters, | 
 |           int ParameterIdx = 0> | 
 | struct EvaluateJacobianForParameterBlocks; | 
 |  | 
 | template <typename ParameterDims, int N, int... Ns, int ParameterIdx> | 
 | struct EvaluateJacobianForParameterBlocks<ParameterDims, | 
 |                                           std::integer_sequence<int, N, Ns...>, | 
 |                                           ParameterIdx> { | 
 |   template <NumericDiffMethodType method, | 
 |             int kNumResiduals, | 
 |             typename CostFunctor> | 
 |   static bool Apply(const CostFunctor* functor, | 
 |                     const double* residuals_at_eval_point, | 
 |                     const NumericDiffOptions& options, | 
 |                     int num_residuals, | 
 |                     double** parameters, | 
 |                     double** jacobians) { | 
 |     if (jacobians[ParameterIdx] != nullptr) { | 
 |       if (!NumericDiff< | 
 |               CostFunctor, | 
 |               method, | 
 |               kNumResiduals, | 
 |               ParameterDims, | 
 |               ParameterIdx, | 
 |               N>::EvaluateJacobianForParameterBlock(functor, | 
 |                                                     residuals_at_eval_point, | 
 |                                                     options, | 
 |                                                     num_residuals, | 
 |                                                     ParameterIdx, | 
 |                                                     N, | 
 |                                                     parameters, | 
 |                                                     jacobians[ParameterIdx])) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     return EvaluateJacobianForParameterBlocks<ParameterDims, | 
 |                                               std::integer_sequence<int, Ns...>, | 
 |                                               ParameterIdx + 1>:: | 
 |         template Apply<method, kNumResiduals>(functor, | 
 |                                               residuals_at_eval_point, | 
 |                                               options, | 
 |                                               num_residuals, | 
 |                                               parameters, | 
 |                                               jacobians); | 
 |   } | 
 | }; | 
 |  | 
 | // End of 'recursion'. Nothing more to do. | 
 | template <typename ParameterDims, int ParameterIdx> | 
 | struct EvaluateJacobianForParameterBlocks<ParameterDims, | 
 |                                           std::integer_sequence<int>, | 
 |                                           ParameterIdx> { | 
 |   template <NumericDiffMethodType method, | 
 |             int kNumResiduals, | 
 |             typename CostFunctor> | 
 |   static bool Apply(const CostFunctor* /* NOT USED*/, | 
 |                     const double* /* NOT USED*/, | 
 |                     const NumericDiffOptions& /* NOT USED*/, | 
 |                     int /* NOT USED*/, | 
 |                     double** /* NOT USED*/, | 
 |                     double** /* NOT USED*/) { | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |